Skip to main content

CT Scan Transformation from a Sharp to a Soft Reconstruction Kernel Using Filtering Techniques

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Abstract

Computed tomography images can be reconstructed using different kernels, depending on the purpose of the examination. Sharp kernels allow the edges of objects such as bones or calcifications to be more precisely defined than is possible with soft kernels; however, they also produce more noise, which makes soft tissue segmentation much more difficult, e.g. in case of a heart modeling.

In this paper, image denoising results are demonstrated for images reconstructed with different kernels. The CT scans of the same patient were reconstructed with 8 kernels: B26f, B30f, B31f, B35f, B36f, B41f, B46f and B50f. All the images were filtered using denoising filters: Anisotropic Diffusion, Gaussian Smoothing, Non-Local Means, and Sigma Filter. The similarity of the images to reference images (B26f) was calculated using SSIM. The results show that filtering can substantially increase the similarity between images reconstructed with a hard or soft kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arcadi, T., Maffei, E., Mantini, C., Guaricci, A., La Grutta, L., Martini, C., Cademartiri, F.: Coronary CT angiography using iterative reconstruction vs. filtered back projection: evaluation of image quality. Acta Bio Medica Atenei Parmensis 86(1), 77ā€“85 (2015)

    Google ScholarĀ 

  2. Chen, W., et al.: Low-dose CT image denoising model based on sparse representation by stationarily classified sub-dictionaries. IEEE Access 7, 116859ā€“116874 (2019)

    ArticleĀ  Google ScholarĀ 

  3. Czerwinski, D.: Digital smoothing filter implementation in cloud computing environment. Przeglad Elektrotechniczny 92(3), 61ā€“64 (2016)

    Google ScholarĀ 

  4. Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323ā€“1341 (2012)

    ArticleĀ  Google ScholarĀ 

  5. GĆ¼ler, E., et al.: Effect of iterative reconstruction on image quality in evaluating patients with coronary calcifications or stents during coronary computed tomography angiography: a pilot study. Anatol. J. Cardiol. 16(2), 119 (2016)

    Google ScholarĀ 

  6. Kikinis, R., Pieper, S.D., Vosburgh, K.G.: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz, F.A. (ed.) Intraoperative Imaging Image-Guided Therapy, pp. 277ā€“289. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7657-3_19

    ChapterĀ  Google ScholarĀ 

  7. Knas, M., Cierniak, R.: Computed tomography images denoising with Markov random field model parametrized by Prewitt mask. In: Choraś, R.S. (ed.) Image Processing & Communications Challenges 6. AISC, vol. 313, pp. 53ā€“58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10662-5_7

    ChapterĀ  Google ScholarĀ 

  8. Kociołek, M., Strzelecki, M., Obuchowicz, R.: Does image normalization and intensity resolution impact texture classification? Comput. Med. Imaging Graph. 81, 101716 (2020)

    ArticleĀ  Google ScholarĀ 

  9. Kumar, M., Diwakar, M.: A new exponentially directional weighted function based CT image denoising using total variation. J. King Saud Univ.-Comput. Inf. Sci. 31(1), 113ā€“124 (2019)

    Google ScholarĀ 

  10. Lee, S.M., et al.: CT image conversion among different reconstruction kernels without a sinogram by using a convolutional neural network. Korean J. Radiol. 20(2), 295ā€“303 (2019)

    ArticleĀ  Google ScholarĀ 

  11. Lim, T.H.: Practical Textbook of Cardiac CT and MRI. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-36397-9

    BookĀ  Google ScholarĀ 

  12. McCollough, C.H.: Translating protocols between scanner manufacturer and model (2010). Technology Assessment Initiative: Summit on CT Dose

    Google ScholarĀ 

  13. Mileto, A., Guimaraes, L.S., McCollough, C.H., Fletcher, J.G., Yu, L.: State of the art in abdominal CT: the limits of iterative reconstruction algorithms. Radiology 293(3), 491ā€“503 (2019)

    ArticleĀ  Google ScholarĀ 

  14. Ohkubo, M., Wada, S., Kayugawa, A., Matsumoto, T., Murao, K.: Image filtering as an alternative to the application of a different reconstruction kernel in CT imaging: feasibility study in lung cancer screening. Med. Phys. 38(7), 3915ā€“3923 (2011)

    ArticleĀ  Google ScholarĀ 

  15. Romans, L.: Computed Tomography for Technologists: A Comprehensive Text. Lippincott Williams & Wilkins, Philadelphia (2018)

    Google ScholarĀ 

  16. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH image to imagej: 25 years of image analysis. Nat. Methods 9(7), 671ā€“675 (2012)

    ArticleĀ  Google ScholarĀ 

  17. Stanke, L., et al.: Towards to optimal wavelet denoising schemea novel spatial and volumetric mapping of wavelet-based biomedical data smoothing. Sensors 20(18), 5301 (2020)

    ArticleĀ  Google ScholarĀ 

  18. Szostek, K., PiĆ³rkowski, A., Kempny, A., Banyś, R., Gackowski, A.: Using computed tomography images for a heart modeling. J. Med. Inf. Technol. 19, 75ā€“84 (2012)

    Google ScholarĀ 

  19. Vƶlgyes, D., Pedersen, M., Stray-Pedersen, A., Waaler, D., Martinsen, A.C.T.: How different iterative and filtered back projection kernels affect computed tomography numbers and low contrast detectability. J. Comput. Assist. Tomogr. 41(1), 75ā€“81 (2017)

    ArticleĀ  Google ScholarĀ 

  20. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600ā€“612 (2004)

    ArticleĀ  Google ScholarĀ 

  21. Węgliński, T., Fabijańska, A.: Poprawa jakości obrazĆ³w tomograficznych o niskiej dawce promieniowania. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (4), 7ā€“9 (2013)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam PiĆ³rkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lasek, J., PiĆ³rkowski, A. (2021). CT Scan Transformation from a Sharp to a Soft Reconstruction Kernel Using Filtering Techniques. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1376. Springer, Singapore. https://doi.org/10.1007/978-981-16-1086-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1086-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1085-1

  • Online ISBN: 978-981-16-1086-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics