Skip to main content

Cytokines in Cancer Immunotherapy

  • Chapter
  • First Online:
Systems and Synthetic Immunology

Abstract

Cytokines are effector molecules of the immune system that act as messengers for cell to cell communications. Cytokines play an indispensable role in immune regulation and are involved in cell proliferation, cell death, inflammation, tissue repair, and cellular homeostasis. In recent years, with the advent of modern innovative technologies, our understanding of the immune system has expanded significantly. This increased understanding about our immune system has enabled us to target several immune mediators, including cytokines, in different diseases, ranging from autoimmunity to cancers. Recent success in the development of checkpoint blockade immunotherapies, targeting PD1 and CTLA-4, in treatment of cancers has revolutionized cancer treatment and sparked renewed interest among cancer immunologists for the discovery of new potential targets. Despite significant success, the response rate with checkpoint blockade therapies still remains limited to a fraction of patients and is often associated with several life-threatening side effects. Therefore, heightened efforts are being made to develop new and better therapies or improve current therapies for cancer treatment. Because of their pleiotropic effects on immune cells and their role in immune activation, cytokines have emerged as potential candidates for cancer immunotherapy and hold a central stage in this whole process of cancer immunotherapeutics. This chapter discusses about the major cytokines involved in cancer immunotherapy and their targeting strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berraondo P et al (2019) Cytokines in clinical cancer immunotherapy. Br J Cancer 120(1):6–15

    Article  CAS  PubMed  Google Scholar 

  2. Conlon KC et al (2019) Cytokines in the treatment of cancer. J Interf Cytokine Res 39(1):6–21

    Article  CAS  Google Scholar 

  3. Dwyer CJ et al (2019) Fueling cancer immunotherapy with common gamma chain cytokines. Front Immunol 10:263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smyth MJ et al (2004) Cytokines in cancer immunity and immunotherapy. Immunol Rev 202:275–293

    Article  CAS  PubMed  Google Scholar 

  5. Waldmann TA (2018) Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol 10(12):a028472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Malek TR (2008) The biology of interleukin-2. Annu Rev Immunol 26:453–479

    Article  CAS  PubMed  Google Scholar 

  7. Arenas-Ramirez N et al (2015) Interleukin-2: biology, design and application. Trends Immunol 36(12):763–777

    Article  CAS  PubMed  Google Scholar 

  8. Wrangle JM et al (2018) IL-2 and beyond in cancer immunotherapy. J Interf Cytokine Res 38(2):45–68

    Article  CAS  Google Scholar 

  9. Shourian M et al (2019) Common gamma chain cytokines and CD8 T cells in cancer. Semin Immunol 42(101307):101307

    Article  PubMed  CAS  Google Scholar 

  10. Pol JG et al (2020) Effects of interleukin-2 in immunostimulation and immunosuppression. J Exp Med 217(1)

    Google Scholar 

  11. Burton JD et al (1994) A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci U S A 91(11):4935–4939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grabstein KH et al (1994) Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264(5161):965–968

    Article  CAS  PubMed  Google Scholar 

  13. Steel JC et al (2012) Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci 33(1):35–41

    Article  CAS  PubMed  Google Scholar 

  14. Rautela J, Huntington ND (2017) IL-15 signaling in NK cell cancer immunotherapy. Curr Opin Immunol 44:1–6

    Article  CAS  PubMed  Google Scholar 

  15. Robinson TO, Schluns KS (2017) The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol Lett 190:159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Waldmann TA (2014) Interleukin-15 in the treatment of cancer. Expert Rev Clin Immunol 10(12):1689–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Waldmann TA et al (2020) Interleukin-15 (dys)regulation of lymphoid homeostasis: implications for therapy of autoimmunity and cancer. J Exp Med 217(1)

    Google Scholar 

  18. Mishra A et al (2014) Molecular pathways: interleukin-15 signaling in health and in cancer. Clin Cancer Res 20(8):2044–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sim GC, Radvanyi L (2014) The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev 25(4):377–390

    Article  CAS  PubMed  Google Scholar 

  20. Waldmann TA (2015) The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 3(3):219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo Y et al (2017) Immunobiology of the IL-15/IL-15Ralpha complex as an antitumor and antiviral agent. Cytokine Growth Factor Rev 38:10–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang M et al (2012) Augmented IL-15Ralpha expression by CD40 activation is critical in synergistic CD8 T cell-mediated antitumor activity of anti-CD40 antibody with IL-15 in TRAMP-C2 tumors in mice. J Immunol 188(12):6156–6164

    Article  CAS  PubMed  Google Scholar 

  23. Chiossone L et al (2018) Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol 18(11):671–688

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi H et al (2005) Role of trans-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood 105(2):721–727

    Article  CAS  PubMed  Google Scholar 

  25. Thi VAD et al (2019) Cell-based IL-15:IL-15Ralpha secreting vaccine as an effective therapy for CT26 colon cancer in mice. Mol Cells 42(12):869

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tamzalit F et al (2014) IL-15.IL-15Ralpha complex shedding following trans-presentation is essential for the survival of IL-15 responding NK and T cells. Proc Natl Acad Sci U S A 111(23):8565–8570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang F et al (2008) Activity of recombinant human interleukin-15 against tumor recurrence and metastasis in mice. Cell Mol Immunol 5(3):189–196

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheever MA (2008) Twelve immunotherapy drugs that could cure cancers. Immunol Rev 222:357–368

    Article  CAS  PubMed  Google Scholar 

  29. Waldmann TA et al (2011) Safety (toxicity), pharmacokinetics, immunogenicity, and impact on elements of the normal immune system of recombinant human IL-15 in rhesus macaques. Blood 117(18):4787–4795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Conlon KC et al (2015) Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol 33(1):74–82

    Article  CAS  PubMed  Google Scholar 

  31. Epardaud M et al (2008) Interleukin-15/interleukin-15R alpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells. Cancer Res 68(8):2972–2983

    Article  CAS  PubMed  Google Scholar 

  32. Mortier E et al (2006) Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem 281(3):1612–1619

    Article  CAS  PubMed  Google Scholar 

  33. Xu W et al (2013) Efficacy and mechanism-of-action of a novel superagonist interleukin-15: interleukin-15 receptor alphaSu/Fc fusion complex in syngeneic murine models of multiple myeloma. Cancer Res 73(10):3075–3086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alizadeh D et al (2019) IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol Res 7(5):759–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanseviero E et al (2019) Anti-CTLA-4 activates Intratumoral NK cells and combined with IL15/IL15Ralpha complexes enhances tumor control. Cancer Immunol Res 7(8):1371–1380

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vallera DA et al (2016) IL15 Trispecific Killer Engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res 22(14):3440–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang M et al (2018) IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci U S A 115(46):E10915–E10924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang M et al (2009) Interleukin-15 combined with an anti-CD40 antibody provides enhanced therapeutic efficacy for murine models of colon cancer. Proc Natl Acad Sci U S A 106(18):7513–7518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cooley S et al (2019) First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv 3(13):1970–1980

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nguyen R et al (2019) Interleukin-15 enhances anti-GD2 antibody-mediated cytotoxicity in an orthotopic PDX model of neuroblastoma. Clin Cancer Res 25(24):7554–7564

    Article  PubMed  PubMed Central  Google Scholar 

  41. Croce M et al (2015) IL-21: a pleiotropic cytokine with potential applications in oncology. J Immunol Res 2015:696578

    Article  PubMed  PubMed Central  Google Scholar 

  42. Davis MR et al (2015) The role of IL-21 in immunity and cancer. Cancer Lett 358(2):107–114

    Article  CAS  PubMed  Google Scholar 

  43. Leonard WJ, Wan CK (2016) IL-21 signaling in immunity. F1000Res 5:224

    Article  Google Scholar 

  44. Stolfi C et al (2012) Interleukin-21 in cancer immunotherapy: friend or foe? Oncoimmunology 1(3):351–354

    Article  PubMed  PubMed Central  Google Scholar 

  45. Santegoets SJ et al (2013) IL-21 in Cancer immunotherapy: at the right place at the right time. Oncoimmunology 2(6):e24522

    Article  PubMed  PubMed Central  Google Scholar 

  46. Skak K et al (2008) Interleukin 21: combination strategies for cancer therapy. Nat Rev Drug Discov 7(3):231–240

    Article  CAS  PubMed  Google Scholar 

  47. Aravindaram K et al (2014) Tumor-associated antigen/IL-21-transduced dendritic cell vaccines enhance immunity and inhibit immunosuppressive cells in metastatic melanoma. Gene Ther 21(5):457–467

    Article  CAS  PubMed  Google Scholar 

  48. Chapuis AG et al (2016) Combined IL-21-primed polyclonal CTL plus CTLA4 blockade controls refractory metastatic melanoma in a patient. J Exp Med 213(7):1133–1139

    Article  PubMed  PubMed Central  Google Scholar 

  49. Croce M et al (2010) Transient depletion of CD4(+) T cells augments IL-21-based immunotherapy of disseminated neuroblastoma in syngeneic mice. Int J Cancer 127(5):1141–1150

    Article  CAS  PubMed  Google Scholar 

  50. Tangye SG, Ma CS (2020) Regulation of the germinal center and humoral immunity by interleukin-21. J Exp Med 217(1):e20191638

    Article  PubMed  CAS  Google Scholar 

  51. Wang G et al (2003) In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res 63(24):9016–9022

    CAS  PubMed  Google Scholar 

  52. Zeng R et al (2005) Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201(1):139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bhatt S et al (2015) Direct and immune-mediated cytotoxicity of interleukin-21 contributes to antitumor effects in mantle cell lymphoma. Blood 126(13):1555–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lewis KE et al (2017) Interleukin-21 combined with PD-1 or CTLA-4 blockade enhances antitumor immunity in mouse tumor models. Oncoimmunology 7(1):e1377873

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pan XC et al (2013) Synergistic effects of soluble PD-1 and IL-21 on antitumor immunity against H22 murine hepatocellular carcinoma. Oncol Lett 5(1):90–96

    Article  CAS  PubMed  Google Scholar 

  56. Rigo V et al (2014) Recombinant IL-21 and anti-CD4 antibodies cooperate in syngeneic neuroblastoma immunotherapy and mediate long-lasting immunity. Cancer Immunol Immunother 63(5):501–511

    Article  CAS  PubMed  Google Scholar 

  57. Chapuis AG et al (2016) T-cell therapy using Interleukin-21-primed cytotoxic T-cell lymphocytes combined with cytotoxic T-cell lymphocyte antigen-4 blockade results in long-term cell persistence and durable tumor regression. J Clin Oncol 34(31):3787–3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davis ID et al (2007) An open-label, two-arm, phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin Cancer Res 13(12):3630–3636

    Article  CAS  PubMed  Google Scholar 

  59. Bhatia S et al (2014) Recombinant interleukin-21 plus sorafenib for metastatic renal cell carcinoma: a phase 1/2 study. J Immunother Cancer 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  60. Timmerman JM et al (2012) A phase I dose-finding trial of recombinant interleukin-21 and rituximab in relapsed and refractory low grade B-cell lymphoproliferative disorders. Clin Cancer Res 18(20):5752–5760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hashmi MH, Van Veldhuizen PJ (2010) Interleukin-21: updated review of Phase I and II clinical trials in metastatic renal cell carcinoma, metastatic melanoma and relapsed/refractory indolent non-Hodgkin’s lymphoma. Expert Opin Biol Ther 10(5):807–817

    Article  CAS  PubMed  Google Scholar 

  62. Barata JT et al (2019) Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 20(12):1584–1593

    Article  CAS  PubMed  Google Scholar 

  63. Gao J et al (2015) Mechanism of action of IL-7 and its potential applications and limitations in cancer immunotherapy. Int J Mol Sci 16(5):10267–10280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zarogoulidis P et al (2014) Interleukin-7 and interleukin-15 for cancer. J Cancer 5(9):765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mackall CL et al (2011) Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 11(5):330–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. ElKassar N, Gress RE (2010) An overview of IL-7 biology and its use in immunotherapy. J Immunotoxicol 7(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sportes C, Gress RE (2007) Interleukin-7 immunotherapy. Adv Exp Med Biol 601:321–333

    Article  PubMed  Google Scholar 

  68. Shi LZ et al (2016) Interdependent IL-7 and IFN-gamma signalling in T-cell controls tumour eradication by combined alpha-CTLA-4+alpha-PD-1 therapy. Nat Commun 7:12335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ding ZC et al (2016) IL-7 signaling imparts polyfunctionality and stemness potential to CD4(+) T cells. Oncoimmunology 5(6):e1171445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Gunnarsson S et al (2010) Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNgamma-transduced tumor cell immunotherapy of experimental glioma. J Neuroimmunol 218(1–2):140–144

    Article  CAS  PubMed  Google Scholar 

  71. Zoon CK et al (2017) Expansion of T cells with Interleukin-21 for adoptive immunotherapy of murine mammary carcinoma. Int J Mol Sci 18(2):270

    Article  PubMed Central  CAS  Google Scholar 

  72. Shum T et al (2017) Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov 7(11):1238–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Suzuki T et al (2016) Requirement of interleukin 7 signaling for anti-tumor immune response under lymphopenic conditions in a murine lung carcinoma model. Cancer Immunol Immunother 65(3):341–354

    Article  CAS  PubMed  Google Scholar 

  74. Deiser K et al (2016) Interleukin-7 modulates anti-tumor CD8+ T cell responses via its action on host cells. PLoS One 11(7):e0159690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Choi YW et al (2016) Intravaginal administration of fc-Fused IL7 suppresses the cervicovaginal tumor by recruiting HPV DNA vaccine-induced CD8 T cells. Clin Cancer Res 22(23):5898–5908

    Article  CAS  PubMed  Google Scholar 

  76. Toyota H et al (2015) Vaccination with OVA-bound nanoparticles encapsulating IL-7 inhibits the growth of OVA-expressing E.G7 tumor cells in vivo. Oncol Rep 33(1):292–296

    Article  CAS  PubMed  Google Scholar 

  77. Fritzell S et al (2013) IFNgamma in combination with IL-7 enhances immunotherapy in two rat glioma models. J Neuroimmunol 258(1–2):91–95

    Article  CAS  PubMed  Google Scholar 

  78. Rosenberg SA et al (2006) IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J Immunother 29(3):313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sportes C et al (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205(7):1701–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ding ZC et al (2017) Adjuvant IL-7 potentiates adoptive T cell therapy by amplifying and sustaining polyfunctional antitumor CD4+ T cells. Sci Rep 7(1):12168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raki Sudan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudan, R. (2020). Cytokines in Cancer Immunotherapy. In: Singh, S. (eds) Systems and Synthetic Immunology . Springer, Singapore. https://doi.org/10.1007/978-981-15-3350-1_10

Download citation

Publish with us

Policies and ethics