Skip to main content

Infection-Induced Oxidative Stress in Chronic Respiratory Diseases

  • Chapter
  • First Online:
Role of Oxidative Stress in Pathophysiology of Diseases

Abstract

Globally, the burden of chronic respiratory diseases (CRDs) is increasing rapidly. These include asthma, chronic respiratory obstructive diseases (COPD) and cystic fibrosis (CF). Patients with CRDs often exhibit increased levels of oxidant burden in the lungs that is primarily due to chronic exposure to deleterious particles, including cigarette smoke, air pollution, occupational exposure to chemicals and fumes and a variety of allergens. In homeostasis, a delicate balance exists between the pro-oxidant and antioxidant molecules/entities. Both structural and immune cells, when encountering these foreign particles, generally respond by triggering pro-oxidative stress-related pathways in the lungs, thereby disturbing the pulmonary redox homeostasis. Moreover, patients with CRDs are also susceptible to frequent/recurrent microbial infections that lead to worsening of disease which often requires hospitalizations. Several pathogens, such as Streptococcus pneumoniae, non-typeable Haemophilus influenzae, Mycobacterium tuberculosis, Aspergillus fumigatus, etc., have the ability to elicit pro-oxidant pathways in the respiratory tract. Also, these pathogens are equipped with enzymatic and non-enzymatic mechanisms to neutralize host-associated oxidative molecules that facilitate the persistence of these pathogens in the lungs. We will discuss the CRD/pathogen-triggered oxidative stress in the lungs. We will also discuss the microbial mechanisms that may further increase oxidative stress in patients with CRDs that potentially results in the heightened inflammatory response in the lungs. Finally, we will discuss the current treatment strategies to limit the oxidative response-associated lung pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park HS, Kim SR, Lee YC (2009) Impact of oxidative stress on lung diseases. Respirology 14(1):27–38

    PubMed  Google Scholar 

  2. Rogers LK, Cismowski MJ (2018) Oxidative stress in the lung – the essential paradox. Curr Opin Toxicol 7:37–43

    PubMed  Google Scholar 

  3. Tkaczyk J, Vizek M (2007) Oxidative stress in the lung tissue--sources of reactive oxygen species and antioxidant defence. Prague Med Rep 108(2):105–114

    PubMed  CAS  Google Scholar 

  4. Domej W, Oettl K, Renner W (2014) Oxidative stress and free radicals in COPD--implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis 9:1207–1224

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Galli F et al (2012) Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta 1822(5):690–713

    PubMed  CAS  Google Scholar 

  6. Sethi S (2010) Infection as a comorbidity of COPD. Eur Respir J 35(6):1209–1215

    PubMed  CAS  Google Scholar 

  7. Cookson W, Cox MJ, Moffatt MF (2018) New opportunities for managing acute and chronic lung infections. Nat Rev Microbiol 16(2):111–120

    PubMed  CAS  Google Scholar 

  8. Ivanov AV, Bartosch B, Isaguliants MG (2017) Oxidative Stress in Infection and Consequent Disease. Oxid Med Cell Longev 2017:3496043

    PubMed  PubMed Central  Google Scholar 

  9. Novaes RD, Teixeira AL, de Miranda AS (2019) Oxidative stress in microbial diseases: pathogen, host, and therapeutics. Oxid Med Cell Longev 2019:8159562

    PubMed  PubMed Central  Google Scholar 

  10. Karademirci M, Kutlu R, Kilinc I (2018) Relationship between smoking and total antioxidant status, total oxidant status, oxidative stress index, vit C, vit E. Clin Respir J 12(6):2006–2012

    PubMed  CAS  Google Scholar 

  11. Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Napierala M et al (2019) The effect of maternal tobacco smoking and second-hand tobacco smoke exposure on human milk oxidant-antioxidant status. Environ Res 170:110–121

    PubMed  CAS  Google Scholar 

  13. Munakata S et al (2018) Oxidative stress responses in human bronchial epithelial cells exposed to cigarette smoke and vapor from tobacco-and nicotine-containing products. Regul Toxicol Pharmacol 99:122–128

    PubMed  CAS  Google Scholar 

  14. Nakayama T, Church DF, Pryor WA (1989) Quantitative analysis of the hydrogen peroxide formed in aqueous cigarette tar extracts. Free Radic Biol Med 7(1):9–15

    PubMed  CAS  Google Scholar 

  15. Zang L-Y, Stone K, Pryor WA (1995) Detection of free radicals in aqueous extracts of cigarette tar by electron spin resonance. Free Radic Biol Med 19(2):161–167

    PubMed  CAS  Google Scholar 

  16. Kaiser J (2000) Evidence mounts that tiny particles can kill. Science 289(5476):22–23

    PubMed  CAS  Google Scholar 

  17. Nel A et al (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    PubMed  CAS  Google Scholar 

  18. Oberdörster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102(suppl 5):173–179

    PubMed  PubMed Central  Google Scholar 

  19. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    PubMed  PubMed Central  Google Scholar 

  20. Rivera Gil P et al (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4(10):5527–5531

    PubMed  CAS  Google Scholar 

  21. Sun Q et al (2008) Air pollution exposure potentiates hypertension through reactive oxygen species-mediated activation of Rho/ROCK. Arterioscler Thromb Vasc Biol 28(10):1760–1766

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Sun L et al (2013) Ambient fine particulate matter and ozone exposures induce inflammation in epicardial and perirenal adipose tissues in rats fed a high fructose diet. Part Fibre Toxicol 10(1):43

    PubMed  PubMed Central  Google Scholar 

  23. Xu X et al (2010) Effect of early particulate air pollution exposure on obesity in mice: role of p47phox. Arterioscler Thromb Vasc Biol 30(12):2518–2527

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Li R et al (2015) Effects of ambient PM 2.5 on pathological injury, inflammation, oxidative stress, metabolic enzyme activity, and expression of c-fos and c-jun in lungs of rats. Environ Sci Pollut Res 22(24):20167–20176

    CAS  Google Scholar 

  25. Toufektsian M-C et al (2001) Cardiac toxicity of singlet oxygen: implication in reperfusion injury. Antioxid Redox Signal 3(1):63–69

    PubMed  CAS  Google Scholar 

  26. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181

    PubMed  CAS  Google Scholar 

  27. McNally JS et al (2005) Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium. Arterioscler Thromb Vasc Biol 25(8):1623–1628

    PubMed  CAS  Google Scholar 

  28. Babior B, Lambeth J, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397(2):342–344

    PubMed  CAS  Google Scholar 

  29. Butler J, Hoey BM (1993) The one-electron reduction potential of several substrates can be related to their reduction rates by cytochrome P-450 reductase. Biochim Biophys Acta Prot Struct Mol Enzymol 1161(1):73–78

    CAS  Google Scholar 

  30. Wang Q-L et al (2019) Ginsenoside Rg1 regulates SIRT1 to ameliorate sepsis-induced lung inflammation and injury via inhibiting endoplasmic reticulum stress and inflammation. Mediators Inflamm 2019:6453296

    PubMed  PubMed Central  Google Scholar 

  31. Chen X et al (2018) Heme oxygenase-1 reduces sepsis-induced endoplasmic reticulum stress and acute lung injury. Mediators Inflamm 2018:9413876

    PubMed  PubMed Central  Google Scholar 

  32. Chong W, Shastri M, Eri R (2017) Endoplasmic reticulum stress and oxidative stress: a vicious nexus implicated in bowel disease pathophysiology. Int J Mol Sci 18(4):771

    PubMed Central  Google Scholar 

  33. Rao X et al (2018) Effect of particulate matter air pollution on cardiovascular oxidative stress pathways. Antioxid Redox Signal 28(9):797–818

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Agustí A, Celli B (2017) Natural history of COPD: gaps and opportunities. ERJ Open Res 3(4):00117-2017

    PubMed  PubMed Central  Google Scholar 

  35. Kc R et al (2018) The role of environmental exposure to non-cigarette smoke in lung disease. Clin Transl Med 7(1):39

    PubMed  PubMed Central  Google Scholar 

  36. Holgate ST (2013) Mechanisms of asthma and implications for its prevention and treatment: a personal journey. Allergy Asthma Immunol Res 5(6):343–347

    PubMed  PubMed Central  Google Scholar 

  37. Boushey HA, Fahy JV (1995) Basic mechanisms of asthma. Environ Health Perspect 103(Suppl 6):229–233

    PubMed  PubMed Central  Google Scholar 

  38. Muhlebach MS et al (2016) Biomarkers for cystic fibrosis drug development. J Cyst Fibros 15(6):714–723

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Dua K et al (2019) Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: an emerging need for novel drug delivery systems. Chem Biol Interact 299:168–178

    PubMed  CAS  Google Scholar 

  40. Santus P et al (2014) Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-acetylcysteine. COPD 11(6):705–717

    PubMed  Google Scholar 

  41. Ciencewicki J, Trivedi S, Kleeberger SR (2008) Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 122(3):456–468. quiz 469–70

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Dekhuijzen PN et al (1996) Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 154(3 Pt 1):813–816

    PubMed  CAS  Google Scholar 

  43. Montuschi P et al (2000) Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med 162(3 Pt 1):1175–1177

    PubMed  CAS  Google Scholar 

  44. Bartoli ML et al (2011) Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediators Inflamm 2011:891752

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Ricciardolo FL et al (2005) Nitrosative stress in the bronchial mucosa of severe chronic obstructive pulmonary disease. J Allergy Clin Immunol 116(5):1028–1035

    PubMed  CAS  Google Scholar 

  46. Zeng M et al (2013) Local and systemic oxidative stress status in chronic obstructive pulmonary disease patients. Can Respir J 20(1):35–41

    PubMed  PubMed Central  Google Scholar 

  47. Sahiner UM et al (2011) Oxidative stress in asthma. World Allergy Organ J 4(10):151–158

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Nadeem A et al (2003) Increased oxidative stress and altered levels of antioxidants in asthma. J Allergy Clin Immunol 111(1):72–78

    PubMed  CAS  Google Scholar 

  49. Wood LG et al (2001) Oxidative stress in cystic fibrosis: dietary and metabolic factors. J Am Coll Nutr 20(2 Suppl):157–165

    PubMed  CAS  Google Scholar 

  50. Reid DW et al (2007) Oxidative stress and lipid-derived inflammatory mediators during acute exacerbations of cystic fibrosis. Respirology 12(1):63–69

    PubMed  Google Scholar 

  51. Zahlten J et al (2014) Streptococcus pneumoniae–induced oxidative stress in lung epithelial cells depends on pneumococcal autolysis and is reversible by resveratrol. J Infect Dis 211(11):1822–1830

    PubMed  Google Scholar 

  52. Rigby KM, DeLeo FR (2012) Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol 34:237

    PubMed  CAS  Google Scholar 

  53. Potter AJ, Trappetti C, Paton JC (2012) Streptococcus pneumoniae uses glutathione to defend against oxidative stress and metal ion toxicity. J Bacteriol 194(22):6248–6254

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Anthony D et al (2019) Excessive reactive oxygen species inhibit IL-17A+ γδ T Cells and innate cellular responses to bacterial lung infection. Antioxid Redox Signal 32(13). https://doi.org/10.1089/ars.2018.7716

  55. Baron S (1996) Classification--medical microbiology. University of Texas Medical Branch at Galveston, Galveston, TX

    Google Scholar 

  56. Harrison A, Bakaletz LO, Munson RS Jr (2012) Haemophilus influenzae and oxidative stress. Front Cell Infect Microbiol 2:40

    PubMed  PubMed Central  Google Scholar 

  57. Harrison A, Baker BD, Munson RS (2015) Overlapping and complementary oxidative stress defense mechanisms in nontypeable Haemophilus influenzae. J Bacteriol 197(2):277–285

    PubMed  Google Scholar 

  58. King PT et al (2015) Nontypeable Haemophilus influenzae induces sustained lung oxidative stress and protease expression. PLoS One 10(3):e0120371

    PubMed  PubMed Central  Google Scholar 

  59. Prasad J et al (2013) Nontypeable haemophilus influenzae (NTHi) and lung oxidative stress. Eur Respir J 42:P247

    Google Scholar 

  60. Goldstein EJ, Murphy TF, Parameswaran GI (2009) Moraxella catarrhalis, a human respiratory tract pathogen. Clin Infect Dis 49(1):124–131

    Google Scholar 

  61. Murphy TF et al (2005) Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune response. Am J Respir Crit Care Med 172(2):195–199

    PubMed  PubMed Central  Google Scholar 

  62. Luke NR, Karalus RJ, Campagnari AA (2002) Inactivation of the Moraxella catarrhalis superoxide dismutase SodA induces constitutive expression of iron-repressible outer membrane proteins. Infect Immun 70(4):1889–1895

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Rosseau S et al (2005) Moraxella catarrhalis–infected alveolar epithelium induced monocyte recruitment and oxidative burst. Am J Respir Cell Mol Biol 32(2):157–166

    PubMed  CAS  Google Scholar 

  64. Slevogt H et al (2006) Moraxella catarrhalis induces inflammatory response of bronchial epithelial cells via MAPK and NF-κB activation and histone deacetylase activity reduction. Am J Physiol Lung Cell Mol Physiol 290(5):L818–L826

    PubMed  CAS  Google Scholar 

  65. Faure E, Kwong K, Nguyen D (2018) Pseudomonas aeruginosa in chronic lung infections: how to adapt within the host? Front Immunol 9:2416

    PubMed  PubMed Central  Google Scholar 

  66. Lan L et al (2010) Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection. Mol Microbiol 75(1):76–91

    PubMed  CAS  Google Scholar 

  67. Hare NJ et al (2011) Proteomics of the oxidative stress response induced by hydrogen peroxide and paraquat reveals a novel AhpC‐like protein in Pseudomonas aeruginosa. Proteomics 11(15):3056–3069

    PubMed  CAS  Google Scholar 

  68. Weng Y et al (2016) Pseudomonas aeruginosa enolase influences bacterial tolerance to oxidative stresses and virulence. Front Microbiol 7:1999

    PubMed  PubMed Central  Google Scholar 

  69. Biagioli MC et al (1999) The role of oxidative stress in rhinovirus induced elaboration of IL-8 by respiratory epithelial cells. Free Radic Biol Med 26(3-4):454–462

    PubMed  CAS  Google Scholar 

  70. Kaul P et al (2000) Rhinovirus-induced oxidative stress and interleukin-8 elaboration involves p47-phox but is independent of attachment to intercellular adhesion molecule-1 and viral replication. J Infect Dis 181(6):1885–1890

    PubMed  CAS  Google Scholar 

  71. Wark P et al (2016) Effect of oxidative stress and rhinovirus infection on mitochondrial/endoplasmic reticular function in human primary bronchial epithelial cells. Eur Respir J 48:PA5011

    Google Scholar 

  72. Mihaylova VT et al (2018) Regional differences in airway epithelial cells reveal tradeoff between defense against oxidative stress and defense against rhinovirus. Cell Rep 24(11):3000–3007.e3

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Hosakote YM et al (2011) Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 183(11):1550–1560

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Hosakote YM et al (2009) Respiratory syncytial virus induces oxidative stress by modulating antioxidant enzymes. Am J Respir Cell Mol Biol 41(3):348–357

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Komaravelli N et al (2015) Respiratory syncytial virus infection downregulates antioxidant enzyme expression by triggering Nrf2 degradation. FASEB J 29(1 Suppl):718.25

    Google Scholar 

  76. Shi T (2018) The etiological role of common respiratory viruses in acute respiratory infections in older adults: a systematic review and meta-analysis. ERJ 52(62 Suppl). https://doi.org/10.1183/13993003.congress-2018.PA4504

  77. Lin X et al (2016) The influenza virus H5N1 infection can induce ROS production for viral replication and host cell death in A549 cells modulated by human Cu/Zn superoxide dismutase (SOD1) overexpression. Viruses 8(1):13

    PubMed Central  Google Scholar 

  78. Schwarz KB (1996) Oxidative stress during viral infection: a review. Free Radic Biol Med 21(5):641–649

    PubMed  CAS  Google Scholar 

  79. Limper AH (2010) The changing spectrum of fungal infections in pulmonary and critical care practice. Proc Am Thorac Soc 7(3):163–168

    PubMed  Google Scholar 

  80. Bulpa P, Dive A, Sibille Y (2007) Invasive pulmonary aspergillosis in patients with chronic obstructive pulmonary disease. Eur Respir J 30(4):782–800

    PubMed  CAS  Google Scholar 

  81. Fairs A et al (2010) IgE sensitization to Aspergillus fumigatus is associated with reduced lung function in asthma. Am J Respir Crit Care Med 182(11):1362–1368

    PubMed  PubMed Central  Google Scholar 

  82. Wark PA et al (2000) Induced sputum eosinophils and neutrophils and bronchiectasis severity in allergic bronchopulmonary aspergillosis. Eur Respir J 16(6):1095–1101

    PubMed  CAS  Google Scholar 

  83. Chotirmall SH et al (2010) Sputum Candida albicans presages FEV(1) decline and hospital-treated exacerbations in cystic fibrosis. Chest 138(5):1186–1195

    PubMed  Google Scholar 

  84. Odebode A, Adekunle A (2019) Biomarkers of oxidative stress as indicators of fungi environmental pollution in Balb/c albino mice monitored from South West, Nigeria. J Pathog 2019:9

    Google Scholar 

  85. Gross NT et al (1999) Production of nitric oxide by rat alveolar macrophages stimulated by Cryptococcus neoformans or Aspergillus fumigatus. Med Mycol 37(3):151–157

    PubMed  CAS  Google Scholar 

  86. Philippe B et al (2003) Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun 71(6):3034–3042

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Lee KS et al (2016) Phosphoinositide 3-kinase-δ regulates fungus-induced allergic lung inflammation through endoplasmic reticulum stress. Thorax 71(1):52–63

    PubMed  Google Scholar 

  88. Missall TA, Lodge JK, McEwen JE (2004) Mechanisms of resistance to oxidative and nitrosative stress: implications for fungal survival in mammalian hosts. Eukaryot Cell 3(4):835–846

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Blasi F (2004) Atypical pathogens and respiratory tract infections. Eur Respir J 24(1):171–181

    PubMed  CAS  Google Scholar 

  90. Cunha BA (2006) The atypical pneumonias: clinical diagnosis and importance. Clin Microbiol Infect 12(Suppl 3):12–24

    PubMed  PubMed Central  Google Scholar 

  91. Hu J et al (2017) Nrf2 regulates the inflammatory response, including heme oxygenase-1 induction, by mycoplasma pneumoniae lipid-associated membrane proteins in THP-1 cells. Pathog Dis 75(4)

    Google Scholar 

  92. Lindgren H et al (2005) The contribution of reactive nitrogen and oxygen species to the killing of Francisella tularensis LVS by murine macrophages. Microbes Infect 7(3):467–475

    PubMed  CAS  Google Scholar 

  93. Zamboni DS, Rabinovitch M (2003) Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Infect Immun 71(3):1225–1233

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Sun G et al (2008) Mycoplasma pneumoniae infection induces reactive oxygen species and DNA damage in A549 human lung carcinoma cells. Infect Immun 76(10):4405–4413

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Azenabor AA et al (2005) Elicitation of reactive oxygen species in Chlamydia pneumoniae-stimulated macrophages: a Ca2+-dependent process involving simultaneous activation of NADPH oxidase and cytochrome oxidase genes. Med Microbiol Immunol 194(1-2):91–103

    PubMed  CAS  Google Scholar 

  96. Brennan RE et al (2004) Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections. Infect Immun 72(11):6666–6675

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Ziltener P, Reinheckel T, Oxenius A (2016) Neutrophil and alveolar macrophage-mediated innate immune control of legionella pneumophila lung infection via TNF and ROS. PLoS Pathog 12(4):e1005591

    PubMed  PubMed Central  Google Scholar 

  98. Bai F et al (2013) Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce apoptosis in porcine alveolar macrophage via increasing nitric oxide production, oxidative stress, and caspase-3 activation. Vet Immunol Immunopathol 155(3):155–161

    PubMed  CAS  Google Scholar 

  99. Jiang Z et al (2017) Capsular polysaccharide of mycoplasma ovipneumoniae induces sheep airway epithelial cell apoptosis via ROS-dependent JNK/P38 MAPK pathways. Oxid Med Cell Longev 2017:6175841

    PubMed  PubMed Central  Google Scholar 

  100. Li Y et al (2016) Mycoplasma ovipneumoniae induces sheep airway epithelial cell apoptosis through an ERK signalling-mediated mitochondria pathway. BMC Microbiol 16(1):222

    PubMed  PubMed Central  Google Scholar 

  101. Ferhat M et al (2009) The TolC protein of Legionella pneumophila plays a major role in multi-drug resistance and the early steps of host invasion. PLoS One 4(11):e7732

    PubMed  PubMed Central  Google Scholar 

  102. LeBlanc JJ, Davidson RJ, Hoffman PS (2006) Compensatory functions of two alkyl hydroperoxide reductases in the oxidative defense system of Legionella pneumophila. J Bacteriol 188(17):6235–6244

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Hicks LD et al (2010) A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth. J Bacteriol 192(8):2077–2084

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Hames C et al (2009) Glycerol metabolism is important for cytotoxicity of Mycoplasma pneumoniae. J Bacteriol 191(3):747–753

    PubMed  CAS  Google Scholar 

  105. Ma Z et al (2016) Elucidation of a mechanism of oxidative stress regulation in Francisella tularensis live vaccine strain. Mol Microbiol 101(5):856–878

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Honn M et al (2017) Lack of OxyR and KatG results in extreme susceptibility of Francisella tularensis LVS to oxidative stress and marked attenuation in vivo. Front Cell Infect Microbiol 7:14

    PubMed  PubMed Central  Google Scholar 

  107. Rabadi SM et al (2016) Antioxidant defenses of Francisella tularensis modulate macrophage function and production of proinflammatory cytokines. J Biol Chem 291(10):5009–5021

    PubMed  CAS  Google Scholar 

  108. Melillo AA, Bakshi CS, Melendez JA (2010) Francisella tularensis antioxidants harness reactive oxygen species to restrict macrophage signaling and cytokine production. J Biol Chem 285(36):27553–27560

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Siemsen DW et al (2009) Inhibition of the human neutrophil NADPH oxidase by Coxiella burnetii. Microbes Infect 11(6-7):671–679

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Hill J, Samuel JE (2011) Coxiella burnetii acid phosphatase inhibits the release of reactive oxygen intermediates in polymorphonuclear leukocytes. Infect Immun 79(1):414–420

    PubMed  CAS  Google Scholar 

  111. Kariya C et al (2008) Mycoplasma pneumoniae infection and environmental tobacco smoke inhibit lung glutathione adaptive responses and increase oxidative stress. Infect Immun 76(10):4455–4462

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Bellinghausen C et al (2016) Viral–bacterial interactions in the respiratory tract. J Gen Virol 97(12):3089–3102

    PubMed  CAS  Google Scholar 

  113. Morens DM, Taubenberger JK, Fauci AS (2008) Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 198(7):962–970

    PubMed  Google Scholar 

  114. Zeng H et al (2013) Tropism and infectivity of influenza virus, including highly pathogenic avian H5N1 virus, in ferret tracheal differentiated primary epithelial cell cultures. J Virol 87(5):2597–2607

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Faris AN et al (2016) Rhinovirus delays cell repolarization in a model of injured/regenerating human airway epithelium. Am J Respir Cell Mol Biol 55(4):487–499

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Pettigrew MM et al (2014) Dynamic changes in the Streptococcus pneumoniae transcriptome during transition from biofilm formation to invasive disease upon influenza A virus infection. Infect Immun 82(11):4607–4619

    PubMed  PubMed Central  Google Scholar 

  117. Siegel SJ, Roche AM, Weiser JN (2014) Influenza promotes pneumococcal growth during coinfection by providing host sialylated substrates as a nutrient source. Cell Host Microbe 16(1):55–67

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Neagos J et al (2015) Epigenetic regulation of tolerance to Toll-like receptor ligands in alveolar epithelial cells. Am J Respir Cell Mol Biol 53(6):872–881

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650

    PubMed  CAS  Google Scholar 

  120. Avadhanula V et al (2007) Nontypeable Haemophilus influenzae and Streptococcus pneumoniae bind respiratory syncytial virus glycoprotein. J Med Microbiol 56(9):1133–1137

    PubMed  CAS  Google Scholar 

  121. Hafez MM, Abdel‐Wahab KS, El‐Fouhil DF (2010) Augmented adherence and internalization of group A Streptococcus pyogenes to influenza A virus infected MDCK cells. J Basic Microbiol 50(S1):S46–S57

    PubMed  Google Scholar 

  122. Sun K, Metzger DW (2014) Influenza infection suppresses NADPH oxidase–dependent phagocytic bacterial clearance and enhances susceptibility to secondary methicillin-resistant Staphylococcus aureus infection. J Immunol 192(7):3301–3307

    PubMed  CAS  Google Scholar 

  123. Sun K et al (2016) Nox2-derived oxidative stress results in inefficacy of antibiotics against post-influenza S. aureus pneumonia. J Exp Med 213(9):1851–1864

    PubMed  PubMed Central  CAS  Google Scholar 

  124. World Health Organization (2018) Global tuberculosis report. WHO, Geneva

    Google Scholar 

  125. Chaisson RE, Martinson NA (2008) Tuberculosis in Africa--combating an HIV-driven crisis. N Engl J Med 358(11):1089–1092

    PubMed  CAS  Google Scholar 

  126. Geldmacher C et al (2010) Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. J Exp Med 207(13):2869–2881

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Geldmacher C et al (2008) Early depletion of Mycobacterium tuberculosis-specific T helper 1 cell responses after HIV-1 infection. J Infect Dis 198(11):1590–1598

    PubMed  Google Scholar 

  128. Hwang JH et al (2013) Incidence and risk factors of tuberculosis in patients with human immunodeficiency virus infection. J Korean Med Sci 28(3):374–377

    PubMed  PubMed Central  Google Scholar 

  129. Swaminathan S et al (2000) Risk of development of tuberculosis in HIV-infected patients. Int J Tuberc Lung Dis 4(9):839–844

    PubMed  CAS  Google Scholar 

  130. Mabunda TE, Ramalivhana NJ, Dambisya YM (2014) Mortality associated with tuberculosis/HIV co-infection among patients on TB treatment in the Limpopo province, South Africa. Afr Health Sci 14(4):849–854

    PubMed  PubMed Central  Google Scholar 

  131. Podlekareva DN et al (2014) Short- and long-term mortality and causes of death in HIV/tuberculosis patients in Europe. Eur Respir J 43(1):166–177

    PubMed  Google Scholar 

  132. Zenner D et al (2015) Impact of TB on the survival of people living with HIV infection in England, Wales and Northern Ireland. Thorax 70(6):566–573

    PubMed  Google Scholar 

  133. Pawlowski A et al (2012) Tuberculosis and HIV co-infection. PLoS Pathog 8(2):e1002464

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Jordan TS, Spencer EM, Davies P (2010) Tuberculosis, bronchiectasis and chronic airflow obstruction. Respirology 15(4):623–628

    PubMed  Google Scholar 

  135. Dheda K et al (2005) Lung remodeling in pulmonary tuberculosis. J Infect Dis 192(7):1201–1209

    PubMed  CAS  Google Scholar 

  136. Scanga CA, Bafica A, Sher A (2007) Viral gene expression in HIV transgenic mice is activated by Mycobacterium tuberculosis and suppressed after antimycobacterial chemotherapy. J Infect Dis 195(2):246–254

    PubMed  CAS  Google Scholar 

  137. Bafica A et al (2003) Cutting edge: in vivo induction of integrated HIV-1 expression by mycobacteria is critically dependent on Toll-like receptor 2. J Immunol 171(3):1123–1127

    PubMed  CAS  Google Scholar 

  138. Larson EC et al (2017) Mycobacterium tuberculosis reactivates latent HIV-1 in T cells in vitro. PLoS One 12(9):e0185162

    PubMed  PubMed Central  Google Scholar 

  139. Tyagi P et al (2020) Mycobacterium tuberculosis reactivates HIV via exosomes mediated resetting of cellular redox potential and bioenergetics. bioRxiv 11:e03293-19. https://doi.org/10.1101/629048

    Article  Google Scholar 

  140. Shastri MD et al (2018) Role of oxidative stress in the pathology and management of human tuberculosis. Oxid Med Cell Longev 2018:7695364

    PubMed  PubMed Central  Google Scholar 

  141. Fontalvo DM et al (2016) Tuberculosis and pulmonary candidiasis co-infection present in a previously healthy patient. Colomb Med 47(2):105–108

    Google Scholar 

  142. Kim SH et al (2015) Invasive pulmonary aspergillosis-mimicking tuberculosis. Clin Infect Dis 61(1):9–17

    PubMed  Google Scholar 

  143. Page ID et al (2019) Chronic pulmonary aspergillosis commonly complicates treated pulmonary tuberculosis with residual cavitation. Eur Respir J 53(3):1801184

    PubMed  PubMed Central  Google Scholar 

  144. Dagenais TRT, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin Microbiol Rev 22(3):447–465

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Suzuki K (2009) Anti-oxidants for therapeutic use: why are only a few drugs in clinical use? Adv Drug Deliv Rev 61(4):287–289

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors express their since gratitude to the University of Newcastle in providing the resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakti D. Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, S.D. et al. (2020). Infection-Induced Oxidative Stress in Chronic Respiratory Diseases. In: Maurya, P., Dua, K. (eds) Role of Oxidative Stress in Pathophysiology of Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-1568-2_8

Download citation

Publish with us

Policies and ethics