Skip to main content

Size and Composition Matters: From Engineered Nanoparticles to Ambient Fine Particles

  • Chapter
  • First Online:
Book cover A New Paradigm for Environmental Chemistry and Toxicology

Abstract

Air pollution is a complex mixture of gaseous, volatile, and particulate matter (PM) containing inorganic and organic species. There is now abundant evidence in epidemiological and toxicological studies that air pollution contributes to the development and exacerbation of diseases of respiratory, cardiovascular, and other organs, and associated mortality. Studies showed that equal masses of PM could induce disparate health effects, suggesting that particle sizes and components may be at fault. The fine and ultrafine PM is considered to be particularly important because the small particles can be easily inhaled. Possible biological mechanisms of action leading to adverse effects include the production of inflammatory mediators in the lung causing systemic inflammation, interaction with neural receptors causing interference with the central nervous system regulation of cardiovascular function, and particle translocation via the bloodstream to other organs. This chapter reviews whether some components of the PM mixture are of a greater public health concern than others, and presents compelling evidence that trace elements are most strongly linked to the adverse effects. Air pollution has wide-ranging and harmful effects on human health and is a major issue for the global community. Further research should explore the effects of source-specific PM with more advanced approaches to exposure modeling, measurements, and statistics, which would lead to more effective legislation and interventions for greater benefits to public health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams K, Greenbaum DS, Shaikh R, van Erp AM, Russell AG (2015) Particulate matter components, sources, and health: systematic approaches to testing effects. J Air Waste Manag Assoc 65(5):544–558. https://doi.org/10.1080/10962247.2014.1001884

    Article  CAS  Google Scholar 

  • Akinaga LMY, Lichtenfels AJ, Carvalho-Oliveira R, Caldini EG, Dolhnikoff M, Silva LFF, De Siqueira Bueno HM, Pereira LAA, Saldiva PHN, Garcia MLB (2009) Effects of chronic exposure to air pollution from Sao Paulo city on coronary of Swiss mice, from birth to adulthood. Toxicol Pathol 37(3):306–314

    Article  CAS  Google Scholar 

  • Allen JL, Oberdörster G, Morris-Schaffer K, Wong C, Klocke C, Sobolewski M, Conrad K, Mayer-Proschel M, Cory-Slechta DA (2017) Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: parallels with neuropathological and behavioral features of autism and other neuro developmental disorders. Neurotoxicology 59:140–154. https://doi.org/10.1016/j.neuro.2015.12.014

    Article  CAS  Google Scholar 

  • Amdur MO, Chen LC, Guty J, Lam, HF, Miller PD (1988) Speciation and pulmonary effects of acidic SOx formed on the surface of ultrafine zinc oxide aerosols. Atmos Environ 22(3):557–560 (1967). https://doi.org/10.1016/0004-6981(88)90199-0

    Article  CAS  Google Scholar 

  • Amdur MO, Chen LC (1989) Furnace-generated acid aerosols: speciation and pulmonary effects. Environ Health Perspect 79:147–150

    Article  CAS  Google Scholar 

  • Analitis A, Georgiadis I, Katsouyanni K (2012) Forest fires are associated with elevated mortality in a dense urban setting. Occup Environ Med 69:158–162

    Article  Google Scholar 

  • Armstead AL, Li B (2016) Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure. Int J Nanomedicine 11:6421–6433

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2019) Nanoparticle-induced ecotoxicological risks in aquatic environments. In: Nanomaterials in plants, algae and microorganisms. Elsevier

    Google Scholar 

  • Barrett EG, Day KC, Gigliotti AP, Reed MD, McDonald JD, Mauderly JL, Seilkop SK (2011) Effects of simulated downwind coal combustion emissions on pre-existing allergic airway responses in mice. Inhalation Toxicol 23(13):792–804. https://doi.org/10.3109/08958378.2011.609917

    Article  CAS  Google Scholar 

  • Bell ML; HEI Health Review Committee. (2012) Assessment of the health impacts of particulate matter characteristics. Res Rep Health Eff Inst. (161):5-38.

    Google Scholar 

  • Beelen R, Hoek G, van den Brandt PA, Goldbohm RA, Fischer P, Schouten LJ, Jerrett M, Hughes E, Armstrong B, Brunekreef B. (2008) Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ Health Perspect. 116(2):196-202. https://doi.org/10.1289/ehp.10767

    Article  Google Scholar 

  • Biswas S, Verma V, Sioutas C, Schauer JJ, Cassee FR, Cho AK (2009) Oxidative potential of semi-volatile and non volatile particulate matter (pm) from heavy-duty vehicles retrofitted with emission control technologies. Environ Sci Technol 43(10):3905–3912. https://doi.org/10.1021/es9000592

    Article  CAS  Google Scholar 

  • Black C, Tesfaigzi Y, Bassein JA, Miller LA. (2017) Wildfire smoke exposure and human health: Significant gaps in research for a growing public health issue. Environ Toxicol Pharmacol. 55:186-195. https://doi.org/10.1016/j.etap.2017.08.022.

    Article  CAS  Google Scholar 

  • Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD; American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. (2010) Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation.121(21):2331-78. https://doi.org/10.1161/CIR.0b013e3181dbece1

    Article  CAS  Google Scholar 

  • Campen MJ, Lund AK, Knuckles TL, Conklin DJ, Bishop B, Young D, Seilkop S, Seagrave J, Reed MD, McDonald JD (2010) Inhaled diesel emissions alter atherosclerotic plaque composition in ApoE −/− mice. Toxicol Appl Pharmacol 242(3):310–317. https://doi.org/10.1016/j.taap.2009.10.021

    Article  CAS  Google Scholar 

  • Cascio WE (2018) Wildland fire smoke and human health. Sci Total Environ 624:586–595. https://doi.org/10.1016/j.scitotenv.2017.12.086

    Article  CAS  Google Scholar 

  • Cassee FR, Heroux M-E, Gerlofs-Nijland ME, Kelly FJ (2013) Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal Toxicol 25(14):802–812. https://doi.org/10.3109/08958378.2013.850127

    Article  CAS  Google Scholar 

  • Chen LC, Nadziejko C (2005) Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. V. CAPs exacerbate aortic plaque development in hyperlipidemic mice. Inhal Toxicol 17:217–224

    Article  CAS  Google Scholar 

  • Chen LC, Miller PD, Amdur MO, Gordon T (1992) Airway hyperresponsiveness in guinea pigs exposed to acid-coated ultrafine particles. J Toxicol Environ Health 35(3):165–174

    Article  CAS  Google Scholar 

  • Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet 389(10082):1907–1918. https://doi.org/10.1016/s0140-6736(17)30505-6

    Article  Google Scholar 

  • Daher N et al (2012) Characterization, sources and redox activity of fine and coarse particulate matter in Milan. Italy Atmos Environ 49:130–141

    Article  CAS  Google Scholar 

  • Dai L, Zanobetti A, Koutrakis P, Schwartz JD (2014) Associations of fine particulate matter species with mortality in the United States: a multicity time-series analysis. Environ Health Perspect 122:837–842. https://doi.org/10.1289/ehp.1307568

    Article  CAS  Google Scholar 

  • Davies NM, Feddah MR (2003) A novel method for assessing dissolution of aerosol inhaler products. Int J Pharm 255:175–187

    Article  CAS  Google Scholar 

  • Dennekamp M, Straney LD, Erbas B, Abramson MJ, Keywood M, Smith K, Sim MR, Glass DC, Monaco AD, Haikerwal A, Tonkin AM (2015) Forest fire smoke exposures and out-of-hospital cardiac arrests in Melbourne, Australia: a case-crossover study. Environ Health Perspect 123(10):959–964. https://doi.org/10.1289/ehp.1408436

    Article  CAS  Google Scholar 

  • Dockery DW, Pope CA III, Xu X, Spengler JD, Ware JH, Fay ME et al (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759. https://doi.org/10.1056/nejm199312093292401

    Article  CAS  Google Scholar 

  • Donaldson K, Seaton A (2012) A short history of the toxicology of inhaled particles. Part Fibre Toxicol 9:13. https://doi.org/10.1186/1743-8977-9-13

    Article  Google Scholar 

  • Dye JA, Lehmann JR, McGee JK, Winsett DW, Ledbetter AD, Everitt JI, Ghio AJ, Costa DL. (2001) Acute pulmonary toxicity of particulate matter filter extracts in rats: coherence with epidemiologic studies in Utah Valley residents. Environ Health Perspect. 109 Suppl 3:395-403. PMID: 11427389

    Article  CAS  Google Scholar 

  • EPA U.S. (2009) Integrated science assessment for particulate matter (final report). Washington, DC, United States Environmental Protection Agency. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=216546#Download

  • EPA U.S. (2012) Provisional assessment of recent studies on health effects of particulate matter exposure. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-12/056. https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=247132

  • EPA U.S. (2014) Office of transportation and air quality. Near Roadway Air Pollution and Health: Frequently Asked Questions. EPA-420-F-14-044

    Google Scholar 

  • EPA U.S (2018) 2014 National Emissions Inventory. https://gispub.epa.gov/neireport/2014/

  • Feld-Cook EE, Bovenkamp-Langlois L, Lomnicki SM (2017) Effect of particulate matter mineral composition on environmentally persistent free radical (EPFR) formation. Environ Sci Technol 51:10396–10402. https://doi.org/10.1021/acs.est.7b01521

    Article  CAS  Google Scholar 

  • Frampton MW, Ghio AJ, Samet JM, Carson JL, Carter JD, Devlin RB. (1999) Effects of aqueous extracts of PM(10) filters from the Utah valley on human airway epithelial cells. Am J Physiol. 277(5):L960-7. https://doi.org/10.1152/ajplung.1999.277.5.L960.

    Article  CAS  Google Scholar 

  • Gauderman WJ, Urman R, Avol E, Berhane K, McConnell R, Rappaport E, Chang R, Lurmann F, Gilliland F (2015) Association of improved air quality with lung development in children. N Engl J Med 372(10):905–913

    Article  CAS  Google Scholar 

  • Gehling W, Dellinger B (2013) Environmentally persistent free radicals and their lifetimes in PM2.5. Environ Sci Technol 47(15):8172–8178. https://doi.org/10.1021/es401767m

    Article  CAS  Google Scholar 

  • Geiser M, Jeannet N, Fierz M, Burtscher H (2017) Evaluating adverse effects of inhaled nanoparticles by realistic in vitro technology. Nanomaterials 7(2):49. https://doi.org/10.3390/nano7020049

    Article  Google Scholar 

  • Ghio AJ, Carter JD, Richards JH, Brighton LE, Lay JC, Devlin RB. (1998) Disruption of normal iron homeostasis after bronchial instillation of an iron-containing particle. Am J Physiol. 274(3):L396-403. https://doi.org/10.1152/ajplung.1998.274.3.L396.

    Article  CAS  Google Scholar 

  • Ghio AJ, Devlin RB. (2001) Inflammatory lung injury after bronchial instillation of air pollution particles. Am J Respir Crit Care Med.164(4):704-8. PMID: 11520740

    Article  CAS  Google Scholar 

  • Giannadaki D, Pozzer A, Lelieveld J (2014) Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos Chem Phys 14(2):957–968

    Article  Google Scholar 

  • Godleski JJ et al (2011) Toxicological evaluation of realistic emission source aerosols (TERESA): summary and conclusions. Inhal Toxicol 23(Suppl. 2):95–103

    Article  CAS  Google Scholar 

  • Gordon CJ, Schladweiler MC, Krantz T, King C, Kodavanti UP. (2012) Cardiovascular and thermoregulatory responses of unrestrained rats exposed to filtered or unfiltered diesel exhaust. Inhal Toxicol. 24(5):296-309. https://doi.org/10.3109/08958378.2012.670811.

    Article  CAS  Google Scholar 

  • Gupta T, Demokritou P, Koutrakis P (2004) Development and performance evaluation of a high-volume ultrafine particle concentrator for toxicological studies. Inhal Toxicol 16:851–862

    Article  CAS  Google Scholar 

  • Hajat A, Hsia C, O’Neill MS (2015) Socioeconomic disparities and air pollution exposure: a global review. Curr Environ Health Rep 2(4):440–450. https://doi.org/10.1007/s40572-015-0069-5

    Article  CAS  Google Scholar 

  • Hamanaka RB, Mutlu GM (2018) Particulate matter air pollution: effects on the cardiovascular system. Front Endocrinol 9:680. https://doi.org/10.3389/fendo.2018.00680

    Article  Google Scholar 

  • Happo MS, Salonen RO, Halinen AI, Jalava PI, Pennanen AS, Dormans JA, Gerlofs-Nijland ME, Cassee FR, Kosma VM, Sillanpaa M, Hillamo R, Hirvonen MR (2010) Inflammation and tissue damage in mouse lung by single and repeated dosing of urban air coarse and fine particles collected from six European cities. Inhal Toxicol 22:402–416. https://doi.org/10.3109/08958370903527908

    Article  CAS  Google Scholar 

  • Heinzerling A, Hsu J, Yip F (2015) Respiratory health effects of ultrafine particles in children: a literature review. Water Air Soil Pollut 227:32. https://doi.org/10.1007/s11270-015-2726-6

    Article  CAS  Google Scholar 

  • HEI Review Panel on Ultrafine Particles (2013) Understanding the health effects of ambient ultrafine particles. HEI Perspectives 3. Health Effects Institute; Boston, MA

    Google Scholar 

  • Health Effects Institute (2015) Executive Summary. The Advanced Collaborative Emissions Study (ACES). Health Effects Institute; Boston, MA

    Google Scholar 

  • Health Effects Institute (2019) Update Winter 2019. www.healtheffects.org/system/files/UpdateWinter2019.pdf

  • Hime NJ, Marks GB, Cowie CT (2018) A comparison of the health effects of ambient particulate matter air pollution from five emission sources. Int J Environ Res Public Health 15(6):1206. https://doi.org/10.3390/ijerph15061206

    Article  CAS  Google Scholar 

  • Im U, Brandt J, Geels C, Hansen KM, Christensen JH, Andersen MS, Solazzo E, Kioutsioukis I, Alyuz U, Balzarini A, Baro R, Bellasio R, Bianconi R, Bieser J, Colette A, Curci G, Farrow A, Flemming J, Fraser A, Jimenez-Guerrero P, Kitwiroon N, Liang C-K, Nopmongcol U, Pirovano G, Pozzoli L, Prank M, Rose R, Sokhi R, Tuccella P, Unal A, Vivanco MG, West J, Yarwood G, Hogrefe C, Galmarini S (2018) Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3. Atmos Chem Phys 18:5967–5989. https://doi.org/10.5194/acp-18-5967-2018

    Article  CAS  Google Scholar 

  • Ito K, Mathes R, Ross Z, Nádas A, Thurston G, Matte T (2011) Fine particulate matter constituents associated with cardiovascular hospitalizations and mortality in New York City. Environ Health Perspect 119:467–473. https://doi.org/10.1289/ehp.1002667

    Article  CAS  Google Scholar 

  • Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1(1):65–70

    Article  CAS  Google Scholar 

  • Kim KH, Kabir E, Kabir S.(2015) A review on the human health impact of airborne particulate matter. Environ Int. 74:136-43.

    Article  CAS  Google Scholar 

  • Kim YH, Tong H, Daniels M, Boykin E, Krantz QT, McGee J, Hays M, Kovalcik K, Dye JA, Gilmour MI. (2014). Cardiopulmonary toxicity of peat wildfire particulate matter and the predictive utility of precision cut lung slices. Part Fibre Toxicol. 11:29. https://doi.org/10.1186/1743-8977-11-29

    Article  Google Scholar 

  • Knol AB et al (2009) Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways. Part Fibre Toxicol 6:19

    Article  Google Scholar 

  • Kutlar Joss M, Eeftens M, Gintowt E, Kappeler R, Künzli N (2017) Time to harmonize national ambient air quality standards. Int J Public Health 62(4):453–462. https://doi.org/10.1007/s00038-017-0952-y

    Article  Google Scholar 

  • Kondo MC, De Roos AJ, White LS, Heilman WE, Mockrin MH, Gross-Davis CA, Burstyn I. (2019) Meta-Analysis of Heterogeneity in the Effects of Wildfire Smoke Exposure on Respiratory Health in North America. Int J Environ Res Public Health. 16(6). pii: E960. https://doi.org/10.3390/ijerph16060960.

    Article  Google Scholar 

  • Lay JC, Bennett WD, Kim CS, Devlin RB, Bromberg PA. (1998) Retention and intracellular distribution of instilled iron oxide particles in human alveolar macrophages. Am J Respir Cell Mol Biol. 18(5):687-95. PMID: 9569239.

    Article  CAS  Google Scholar 

  • Leclercq B, Alleman LY, Perdrix E, Riffault V, Happillon M, Strecker A, Lo-Guidice J-M, Garçon G, Coddeville P (2017) Particulate metal bioaccessibility in physiological fluids and cell culture media: toxicological perspectives. Environ Res 156:148–157. https://doi.org/10.1016/j.envres.2017.03.029

    Article  CAS  Google Scholar 

  • Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569):367–371

    Article  CAS  Google Scholar 

  • Lipfert FW, Wyzga RE, Baty JD, Miller JP (2009) Air pollution and survival within the Washington University-EPRI Veterans cohort: risks based on modeled estimates of ambient levels of hazardous and criteria air pollutants. J Air Waste Manage Assoc 59:473–489. https://doi.org/10.1080/10473289.2009.10465740

    Article  CAS  Google Scholar 

  • Lippmann M, Chen LC (2009) Health effects of concentrated ambient air particulate matter (CAPs) and its components. Crit Rev Toxicol 39(10):865– 913

    Article  CAS  Google Scholar 

  • Lippmann M, Ito K, Hwang JS, Maciejczyk P, Chen LC (2006) Cardiovascular effects of nickel in ambient air. Environ Health Perspect 114(11):1662–1669. https://doi.org/10.1289/ehp.9150

    Article  CAS  Google Scholar 

  • Lippmann M, Chen L-C, Gordon T, Ito K, Thurston GD (2013) National Particle Component Toxicity (NPACT) initiative: integrated epidemiologic and toxicologic studies of the health effects of particulate matter components. Res Rep 177 Health Effects Institute, Boston, MA

    Google Scholar 

  • Lippmann M. (2010) Targeting the components most responsible for airborne particulate matter health risks. J Expo Sci Environ Epidemiol. 20(2):117-8. https://doi.org/10.1038/jes.2010.1

    Article  Google Scholar 

  • Lippmann M (2014) Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications. Crit Rev Toxicol 44(4):299–347. https://doi.org/10.3109/10408444.2013.861796

    Article  CAS  Google Scholar 

  • Liu JC, Pereira G, Uhl SA, Bravo MA, Bell ML (2015) A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ Res 136:120–132

    Article  CAS  Google Scholar 

  • Lucking AJ, Lundback M, Barath SL et al (2011) Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation 123:1721–1728

    Article  CAS  Google Scholar 

  • Lund AK (2010) Cardiovascular toxicology. In: Comprehensive toxicology, 2nd edn. McQueen, CA

    Google Scholar 

  • Maciejczyk P, Zhong M, Li Q, Xiong S, Nadziejko C, Chen LC (2005) The design of a concentrated ambient particulate matter exposure system for biometric telemetry monitoring. Inhal Toxicol 17:189–197

    Article  CAS  Google Scholar 

  • Maciejczyk P, Zhong M, Lippmann M, Chen LC (2010) Oxidant generation capacity of source-apportioned PM2.5. Inhal Toxicol 2:29–36

    Article  Google Scholar 

  • Malig BJ, Ostro BD (2009) Coarse particles and mortality: evidence from a multi-city study in California. Occup Environ Med 66:832–839

    Article  CAS  Google Scholar 

  • Mauderly JL, Barrett EG, Gigliotti AP, McDonald JD, Reed MD, Seagrave J, Mitchell LA, Seilkop SK (2011) Health effects of subchronic inhalation exposure to simulated downwind coal combustion emissions. Inhal Toxicol 23(6):349–362

    Article  CAS  Google Scholar 

  • Miller MR, Shaw CA, Langrish JP (2012) From particles to patients: Oxidative stress and the cardiovascular effects of air pollution. Future Cardiol 8(4):577–602. https://doi.org/10.2217/fca.12.43

    Article  CAS  Google Scholar 

  • Mirowsky J, Hickey C, Horton L, Blaustein M, Galdanes K, Peltier RE, Chillrud S, Chen LC, Ross J, Nadas A, Lippmann M, Gordon T (2013) The effect of particle size, location and season on the toxicity of urban and rural particulate matter. Inhal Toxicol 25(13):747–757

    Article  CAS  Google Scholar 

  • Mirowsky JE, Jin L, Thurston G, Lighthall D, Tyner T, Horton L, Galdanes K, Chillrud S, Ross J, Pinkerton KE, Chen LC, Lippmann M, Gordon T (2015) In vitro and in vivo toxicity of urban and rural particulate matter from California. Atmos Environ 103:256–262. http://doi.org/10.1016/j.atmosenv.2014.12.051

    Article  CAS  Google Scholar 

  • Molinelli AR, Madden MC, McGee JK, Stonehuerner JG, Ghio AJ.(2002) Effect of metal removal on the toxicity of airborne particulate matter from the Utah Valley. Inhal Toxicol. 14(10):1069-86. PMID: 12396411

    Article  CAS  Google Scholar 

  • Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19(1):67–106

    Article  CAS  Google Scholar 

  • Newby DE, Mannucci PM, Tell GS, Baccarelli AA, Brook RD, Donaldson K, Forastiere F, Franchini M, Franco OH, Graham I, Hoek G, Hoffmann B, Hoylaerts MF, Künzli N, Mills N, Pekkanen J, Peters A, Piepoli MF, Rajagopalan S, Storey RF (2015) ESC Working Group on Thrombosis, European Association for Cardiovascular Prevention and Rehabilitation, ESC Heart Failure Association, Expert position paper on air pollution and cardiovascular disease. Eur Heart J 36:83–93. https://doi.org/10.1093/eurheartj/ehu458

    Article  Google Scholar 

  • Newell K, Kartsonaki C, Lam K, Kurmi O (2018) Cardiorespiratory health effects of gaseous ambient air pollution exposure in low and middle income countries: a systematic review and meta-analysis. Environ Health 17(1):41. https://doi.org/10.1186/s12940-018-0380-3 A global access science source

    Article  CAS  Google Scholar 

  • Nhung NTT, Amini H, Schindler C, Kutlar Joss M, Dien TM, Probst-Hensch N, Perez L, Kunzli N (2017) Short-term association between ambient air pollution and pneumonia in children: a systematic review and meta-analysis of time-series and case-crossover studies. Environ Pollut 230:1000–1008. https://doi.org/10.1016/j.envpol.2017.07.063

    Article  CAS  Google Scholar 

  • Oberdörster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102(Suppl 5):173–179

    Google Scholar 

  • Oberdörster G, Gelein RM, Ferin J, Weiss B (1995) Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhal Toxicol 7(1):111–124

    Article  Google Scholar 

  • Ohlwein S, Kappeler R, Kutlar Joss M et al. (2019) Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int J Public Health. https://doi.org/10.1007/s00038-019-01202-7

    Article  Google Scholar 

  • Ole Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggio M, Weinmayr G, Hoffmann B, Fisher P, Nieuwenhuijsen MJ, Brunekreef B, Xun WW, Katsouyanni K, Dimakopoulou K, Sommar J, Forsberg B, Modig L, Oudin A, Oftedal B, Schwarze PE, Nafstad P, De Faire U, Pedersen NL, Ostenson CG, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen KT, Sørensen M, Tjønneland A, Ellermann T, Eeftens M, Peeters PH, Meliefste K, Wang M, Bueno-de-Mesquita B, Key TJ, de Hoogh K, Concin H, Nagel G, Vilier A, Grioni S, Krogh V, Tsai MY, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Trichopoulou A, Bamia C, Vineis P, Hoek G (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 14:813–822

    Article  Google Scholar 

  • Ostro B, Lipsett M, Reynolds P, Goldberg D et al (2010) Long-term exposure to constituents of fine particle air pollution and mortality: results from the California teachers study. Environ Health Perspect 118:363–369. https://doi.org/10.1289/ehp.0901181

    Article  CAS  Google Scholar 

  • Ostro B, Reynolds P, Goldberg D, Hertz A et al (2011) Erratum: assessing long-term exposure in the California teachers study. Environ Health Perspect 119:242–243

    Google Scholar 

  • Pelfrêne A, Cave MR, Wragg J, Douay F (2017) In vitro investigations of human bioaccessibility from reference materials using simulated lung fluids. Int J Environ Res Pub Health 14(2):112

    Article  Google Scholar 

  • Peters A, Veronesi B, Calderón-Garcidueñas L, Gehr P, Chen LC, Geiser M, Reed W, Rothen-Rutishauser B, Schürch S, Schulz H. (2006) Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol. 3:13. PMID: 16961926

    Article  Google Scholar 

  • Polymenakou PN et al (2008) Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environ Health Perspect 116(3):292–296

    Article  Google Scholar 

  • Pope CA 3rd. (1989) Respiratory disease associated with community air pollution and a steel mill, Utah Valley. Am J Public Health. 79(5):623-8. PMID: 2495741

    Google Scholar 

  • Pope CA 3rd. (1991) Respiratory hospital admissions associated with PM10 pollution in Utah, Salt Lake, and Cache Valleys. Arch Environ Health. 46(2):90-7. PMID: 2006899

    Article  Google Scholar 

  • Pope CA 3rd, Schwartz J, Ransom MR. (1992) Daily mortality and PM10 pollution in Utah Valley. Arch Environ Health. 47(3):211-7. PMID: 1596104

    Article  Google Scholar 

  • Pope CA III, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE et al (1995) Particulate air pollution as a predictor of mortality in a prospective study of US adults. Am J Respir Crit Care Med 151:669–674. https://doi.org/10.1164/ajrccm/151.3_pt_1.669

    Article  Google Scholar 

  • Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K et al (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141. https://doi.org/10.1001/jama.287.9.1132

    Article  CAS  Google Scholar 

  • Pratviel G (2012) Chapter 7. Oxidative DNA damage mediated by transition metal ions and their complexes. In: Sigel A, Sigel H, Sigel RKO (eds) Interplay between metal ions and nucleic acids metal ions in life sciences, pp 201–216. Springer. https://doi.org/10.1007/978-94-007-2172-2_7

    Google Scholar 

  • Putaud JP, Van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyrys J et al (2010) A European aerosol phenomenology - 3: physical and chemical characteristics of particulate matter from 60 rural, urban, and curbside sites across Europe. Atmos Environ 44(10):1308–1320. https://doi.org/10.1016/jatmosenv.2009.12.011

    Article  CAS  Google Scholar 

  • Quan C, Sun Q, Lippmann M, Chen LC. (2010) Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction. Inhal Toxicol. 22(9):738-53. https://doi.org/10.3109/08958371003728057.

    Article  CAS  Google Scholar 

  • Rappold AG, Stone SL, Cascio WE et al (2011) Peat bog wildfire smoke exposure in rural North Carolina is associated with cardiopulmonary emergency department visits assessed through syndromic surveillance. Environ Health Perspect 119:1415–1420

    Article  Google Scholar 

  • Reid JS, Koppmann R, Eck TF, Eleuterio DP (2005) A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos Chem Phys 5:799–825

    Article  CAS  Google Scholar 

  • Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT (2016) Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect 124:1334–1343. https://doi.org/10.1289/ehp.1409277

    Article  Google Scholar 

  • Rokoff LB, Koutrakis P, Garshick E, Karagas MR, Oken E, Gold DR, Fleisch AF. (2017) Wood Stove Pollution in the Developed World: A Case to Raise Awareness Among Pediatricians. Curr Probl Pediatr Adolesc Health Care. 47(6):123-141. https://doi.org/10.1016/j.cppeds.2017.04.001.

    Article  Google Scholar 

  • Saffari A, Daher N, Shafer MM, Schauer JJ, Sioutas C (2014) Global perspective on the oxidative potential of airborne particulate matter: a synthesis of research findings. Environ Sci Technol 48(13):7576–7583

    Article  CAS  Google Scholar 

  • Saffari A, Hasheminassab S, Wang D, Shafer MM, Schauer JJ, Sioutas C (2015) Impact of primary and secondary organic sources on the oxidative potential of quasi-ultrafine particles (PM0.25) at three contrasting locations in the Los Angeles Basin. Atmos Environ 120:286–296

    Article  CAS  Google Scholar 

  • Sastry N (2002) Forest fires, air pollution, and mortality in southeast Asia. Demography 39:1–23

    Article  Google Scholar 

  • Seilkop SK, Campen MJ, Lund AK, McDonald JD, Mauderly JL (2012) Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice. Inhal Toxicol 24(5):270–287

    Article  CAS  Google Scholar 

  • Shafer MM, Perkins DA, Antkiewicz DS, Stone EA, Quraishi TA, Schauer JJ (2010) Reactive oxygen species activity and chemical speciation of size-fractionated atmospheric particulate matter from Lahore, Pakistan: an important role for transition metals. J Environ Monit 12(3):704–715

    Article  CAS  Google Scholar 

  • Shiraiwa M, Ueda K, Pozzer A, Lammel G, Kampf CJ, Akihiro Fushimi, … Weber (2017) Aerosol health effects from molecular to global scales. Environ Sci Technol 51(23):13545–43567. https://doi.org/10.1021/acs.est.7b04417

    Article  CAS  Google Scholar 

  • Sholkovitz ER, Sedwick PN, Church TM, Baker AR, Powell CF (2012) Fractional solubility of aerosol iron: synthesis of a global-scale data set. Geochim Cosmochim Acta 89:173–189. https://doi.org/10.1016/j.gca.2012.04.022

    Article  CAS  Google Scholar 

  • Sigsgaard T, Forsberg B, Annesi-Maesano I, Blomberg A, Bølling A, Boman C, Bønløkke J, Brauer M, Bruce N, Héroux ME, Hirvonen MR, Kelly F, Künzli N, Lundbäck B, Moshammer H, Noonan C, Pagels J, Sallsten G, Sculier JP, Brunekreef B. (2015) Health impacts of anthropogenic biomass burning in the developed world. Eur Respir J. 46(6):1577-88. https://doi.org/10.1183/13993003.01865-2014.

    Article  CAS  Google Scholar 

  • Singh DK, Gupta T (2016) Role of transition metals with water soluble organic carbon in the formation of secondary organic aerosol and metallo-organics in PM1 sampled during post monsoon and pre-winter time. J Aerosol Sci 94:56–69. https://doi.org/10.1016/j.jaerosci.2016.01.002

    Article  CAS  Google Scholar 

  • Sioutas C, Kim S, Chang M (1999) Development and evaluation of a prototype ultrafine particle concentrator. J Aerosol Sci 30:1001–1012

    Article  CAS  Google Scholar 

  • Snider G, Weagle C, Murdymootoo K, Ring A, Ritchie Y et al (2016) Variation in global chemical composition of PM2.5: emerging results from SPARTAN. Atmos Chem Phys 16:9629–9653

    Article  CAS  Google Scholar 

  • Straney L, Finn J, Dennekamp M et al (2014) Evaluating the impact of air pollution on the incidence of out-of-hospital cardiac arrest in the Perth Metropolitan Region: 2000–2010. J Epidemiol Commun Health 68:6–12

    Article  Google Scholar 

  • Stone V, Miller MR, Clift MJD, Elder A, Mills NL, Moller P, … Cassee FR (2017) Nanomaterials versus ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ Health Perspect 125(10):106002. https://doi.org/10.1289/ehp424

    Article  Google Scholar 

  • Thurston GD, Ito K, Lall R, Burnett RT, Turner MC, Krewski D, Shi, Y, Jerrett M, Gapstur SM, Diver WR, Pope CA III (2013) NPACT study 4 Mortality and long-term exposure to PM2.5 and its components in the American cancer society’s cancer prevention study II Cohort. In: National Particle Component Toxicity (NPACT) initiative: integrated epidemiologic and toxicologic studies of the health effects of particulate matter components. Res Rep 177. Health Effects Institute, Boston, MA

    Google Scholar 

  • Thurston GD, Kipen H, Annesi-Maesano I, Balmes J, Brook RD, Cromar K et al (2017) A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J 49(1):1600419. https://doi.org/10.1183/13993003.00419-2016

    Article  CAS  Google Scholar 

  • Truong H, Lomnicki S, Dellinger B (2010) Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter. Environ Sci Technol 44(6):1933–1939. https://doi.org/10.1021/es902648t

    Article  CAS  Google Scholar 

  • van Donkelaar A, Martin RV, Brauer M, Hsu NC, Kahn RA, Levy RC, Lyapustin A, Sayer AM, Winker DM (2016) Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ Sci Technol 50(7):3762–3772

    Article  Google Scholar 

  • Vedal S, Kim SY, Miller KA, Fox JR, Bergen S, Gould T, Kaufman JD, Larson TV, Sampson PD, Sheppard L, Simpson SD, Szpiro AA (2013) Section 1. NPACT epidemiologic study of components of fine particulate matter and cardiovascular disease in the MESA and WHI-OS Cohorts. In: National particle component toxicity (NPACT) initiative report on cardiovascular effects. Res Rep 178. Health Effects Institute, Boston, MA

    Google Scholar 

  • Vejerano EP, Rao G, Khachatryan L, Cormier SA, Lomnicki S (2018) Environmentally persistent free radicals: insights on a new class of pollutants. Environ Sci Technol 5:2468–2481

    Article  Google Scholar 

  • Verisk (2017) Wildfire risk analysis. https://www.verisk.com/insurance/visualize/key-findings-from-the-2017-verisk-wildfire-risk-analysis/?utm_source=Social&utm_medium=Twitter&utm_campaign=VeriskSM&utm_content=842017. Accessed 31 May 2019

  • Vieira JL, Guimaraes GV, de Andre PA, Cruz FD, Saldiva PHN, Bocchi EA (2016) Respiratory filter reduces the cardiovascular effects associated with diesel exhaust exposure: a randomized, prospective, double-blind, controlled study of heart failure: the FILTER-HF trial. JACC: Heart Failure 4(1):55–64 https://doi.org/10.1016/j.jchf.2015.07.018

    Google Scholar 

  • Voutsa D, Samara C (2002) Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmos Environ 36:3583–3590

    Article  CAS  Google Scholar 

  • Wang M, Beelen R, Stafoggia M Raaschou-Nielsen O, Andersen ZJ, Hoffmann B, Fischer P, Houthuijs D, Nieuwenhuijsen M, Weinmayr G, Vineis P0, Xun WW, Dimakopoulou K, Samoli E, Laatikainen T, Lanki T, Turunen AW, Oftedal B, Schwarze P, Aamodt G, Penell J, De Faire U, Korek M, Leander K, Pershagen G, Pedersen NL, Östenson CG, Fratiglioni L, Eriksen KT, Sørensen M, Tjønneland A, Bueno-de-Mesquita B0, Eeftens M, Bots ML, Meliefste K, Krämer U, Heinrich J, Sugiri D, Key T, de Hoogh K, Wolf K, Peters A, Cyrys J, Jaensch A, Concin H0, Nagel G, Tsai MY, Phuleria H, Ineichen A, Künzli N, Probst-Hensch N, Schaffner E, Vilier A, Clavel-Chapelon F, Declerq C, Ricceri F, Sacerdote C, Marcon A, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Katsoulis M, Trichopoulou A, Keuken M0, Jedynska A0, Kooter IM0, Kukkonen J, Sokhi RS, Brunekreef B, Katsouyanni K, Hoek G. (2014) Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: results from the ESCAPE and TRANSPHORM projects. Environ Int. 66:97-106. https://doi.org/10.1016/j.envint.2014.01.026

    Article  CAS  Google Scholar 

  • Weagle CL, Snider G, Li C, van Donkelaar A, … and Martin RV. (2018). Global sources of fine particulate matter: interpretation of PM2.5 chemical composition observed by SPARTAN using a global chemical transport model. Environ Sci Technol 52(20):11670–11681 https://doi.org/10.1021/acs.est.8b01658

  • Weichenthal S, Crouse DL, Pinault L, Godri-Pollitt K, Lavigne E, Evans G, van Donkelaar A, Martin RV, Burnett RT (2016) Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). Environ Res 146:92–99. https://doi.org/10.1016/j.envres.2015.12.013

    Article  CAS  Google Scholar 

  • Wegesser TC, Pinkerton KE, Last JA (2009) California wildfires of 2008: coarse and fine particulate matter toxicity. Environ Health Perspect 117(6):893–897. https://doi.org/10.1289/ehp0800166

    Article  Google Scholar 

  • WHO Regional Office for Europe (2013) Review of evidence on health aspects of air pollution—REVIHAAP Project, Technical Report Copenhagen: WHO Regional Office for Europe. http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report.pdf

  • WHO (2016) Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organization. http://www.who.int

  • WHO (2018) 9 out of 10 people worldwide breathe polluted air, but more countries are taking action. News Release, 2 May 2018. http://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action

  • Wiseman C (2015) Analytical methods for assessing metal bioaccessibility in airborne particulate matter: a scoping review. Anal Chim Acta 877:9–18. https://doi.org/10.1016/j.aca.2015.01.024

    Article  CAS  Google Scholar 

  • Wyzga RE, Rohr AC (2015) Long-term particulate matter exposure: attributing health effects to individual PM components. J Air Waste Manag Assoc 65(5):523–543. https://doi.org/10.1080/10962247.2015.1020396

    Article  CAS  Google Scholar 

  • Yang BY, Qian Z, Howard SW, Vaughn MG, Fan SJ, Liu KK, Dong GH (2018) Global association between ambient air pollution and blood pressure: a systematic review and meta-analysis. Environ Pollut 235:576–588. https://doi.org/10.1016/j.envpol.2018.01.001

    Article  CAS  Google Scholar 

  • Ye D, Klein M, Mulholland JA, Russell AG, Weber R, Edgerton ES, Chang HH, Sarnat JA, Tolbert PE, Ebelt Sarnat S (2018) Estimating acute cardiovascular effects of ambient PM2.5 metals. Environ Health Perspect 126(2):027007. https://doi.org/10.1289/ehp2182

    Article  CAS  Google Scholar 

  • Youssouf H, Liousse C, Roblou L, Assamoi EM, Salonen RO, Maesano C, Banerjee S, Annesi-Maesano I (2014) Non-accidental health impacts of wildfire smoke. Int J Environ Res Pub Health 11:11772–11804

    Article  Google Scholar 

  • Zhou J, Ito K, Lall R, Lippmann M, Thurston G (2011) Time-series analysis of mortality effects of fine particulate matter components in Detroit and Seattle. Environ Health Perspect 119:461–466. https://doi.org/10.1289/ehp.1002613

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lung-Chi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, LC., Maciejczyk, P. (2020). Size and Composition Matters: From Engineered Nanoparticles to Ambient Fine Particles. In: Jiang, G., Li, X. (eds) A New Paradigm for Environmental Chemistry and Toxicology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9447-8_15

Download citation

Publish with us

Policies and ethics