Skip to main content

Microbial Resistance to Antibiotics

  • Chapter
  • First Online:
Bacterial Adaptation to Co-resistance

Abstract

Development of Antibiotic Resistance in bacteria has become a major public health concern. Bacteria from Clinical and Non Clinical settings have become resistant to several antibiotics. Self-medication, Excessive use of antibiotics and Incomplete antibiotic treatment is the Primary cause of resistance to antibiotics. Studies have shown that the Prophylactic use of “non priority” antimicrobials in Animal husbandry has lead to transmission of resistant bacteria Via Food chain and Environment affecting the human health.

Development of Intrinsic antibiotic resistance to bacteria is mediated by various mechanisms like Minimization of Intracellular concentration of antibiotic due to poor penetration into bacterium or Antibiotic Efflux, Modification of antibiotic target by gene mutation and Inactivation of antibiotic by hydrolysis. Bacteria can also acquire resistance to antibiotics via mutation in Chromosomal genes and by horizontal transfer.

It is estimated that 700,000 deaths occur annually due to AMR Worldwide affecting every country. Keeping in view of this current status of AMR, there is need for the development of Genetically engineered phages to deliver antimicrobial agents to bacteria; Synthesis of Metal Nanoparticles which affect the bacterial cell and their metabolic pathways; Production of Antimicrobial Peptides as they are Host Defense Effector molecules in the living organism and Synthesis of New antibiotics and use of Prebiotics and Quroum sensing Inhibitors as an Alternative Approach to Combat Antibiotic resistance or to treat Pathogenic bacterial Infection. Preventive measures have been under taken at National level and International level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamad RS, Fakhimi A, Hamid RS et al (2007) Synthesis and effect of silver nano particles on the anti bacterial activity of different antibiotics against S. aureus and E. coli. Nanomed Nanotechnol Biol Med 3:168–171. https://doi.org/10.1016/j.nano.2007.02.001

    Article  CAS  Google Scholar 

  • Arthur M, Reynolds PE, Depardien F et al (1996) Mechanisms of glycopeptides resistance in enterococci. J Infect Dis 32:11–16

    CAS  Google Scholar 

  • Bartlett JG, Gilbert DN, Spellberg B (2013) Sevenways to preserve the miracle of antibiotics. Clin Infect Dis 56(10):1445–1450

    Article  CAS  Google Scholar 

  • Caroline W, Kasman LM, David AS, Phillip AW, Dolan JW, Schmidt MG, Norris JS (2003) Antimicrob Agents Chemother 47(4):1301–1307. https://doi.org/10.1128/AAC.47.4.1301-1307.2003

    Article  CAS  Google Scholar 

  • Dabrowska K, Switala-jelenk, Opolski A et al (2005) Bacteriophage penetration in vertebrates. J Appl Microbiol 98:7–13. https://doi.org/10.1073/pnas.0914030107

    Article  CAS  Google Scholar 

  • Dewey JS, Savva CG, White RL, Vitha S, Holzenburg A, Young R (2010) Micron scale holes terminate the phage infection cycle. Proc Natl Acad Sci USA 107:2219–2223. https://doi.org/10.1073/obas.091430107

    Article  CAS  PubMed  Google Scholar 

  • Doyle MP (2006) Antimicrobial resistance: implications for the food system. Compr Rev Food Sci Food Saf 5:71–137

    Article  CAS  Google Scholar 

  • Flamm RK, Rhomberg PR, Simpson KM et al (2015) In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infections and with selected resistance mechanisms. Antimicrob Agents Chemother 59(3):1751–1754

    Article  Google Scholar 

  • Holcik M, Iyer VN (1997) Conditionally Lethal genes associated with bacterial plasmids. Microbiology 143:3403–3416

    Article  CAS  Google Scholar 

  • Hwang IY, Koh E, Wong A et al (2017) Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeurginosa gut infection in animal models. Nat Commun 8:15028

    Google Scholar 

  • Janiszewska J, Urbanczyk LZ (2007) Amphillic dendrimeric peptides as model non sequential Pharmacophores with Antimicrobial properties. J Mol Microbiol Biotechnol 13:220–225

    Article  CAS  Google Scholar 

  • Katayama Y, Ito T, Hiramatsu K (2000) A new class of genetic element, Staphylococcus casette chromosome mec, enccodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44(6):1549–1555. https://doi.10.1128/aac44.6.1549-1555.2000

    Article  CAS  Google Scholar 

  • Kumaraswamy KK, Toleman MA, Walsh TR et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan and the U.K. a molecular, biological and epidemiological study. Lancet Infect Dis 10(9):597–602

    Google Scholar 

  • Kim L, Mc Gee L, Tom Czyk S, Beall B (2016) Biological and epidemiological features of antibiotic-resistance streptococcus pneumonia in pre-and post conjugate vaccine era. Clin Microbiol Rev 29(3):525–552

    Article  CAS  Google Scholar 

  • Linton AH (1997) Antibiotic resistance: the present situation reviewed. Vet Rec 100:354–360

    Article  Google Scholar 

  • MacFadden DR, McGough SF, Fisman D et al (2018) Antibiotic resistance increases with local temperature. Nat Clim Chang 8(6):510–514. https://doi.org/10.1038/541558-018-0161-6

  • Maffoli SI, Yuzhang DD et al (2017) Antibacterial nucleoside Analog inhibitor of bacterial polymerase. Cell 169(7):1240. http://dx.doi.org/10.1016/j.cell.2017.05.042

  • Merril CR, Scholl D, Adhya S (2006) Phage therapy. In: Calender R (ed) The bacteriophages. Oxford University Press, New York, pp 725–741

    Google Scholar 

  • Michael CA, Gillings MR, Holmes AJ et al (2004) Mobile gene casettes:a fundamental resource for bacterial evolution. Am Nat 164:1–12

    Article  Google Scholar 

  • Millette M, Cornut G, Dupont C et al (2008) Capacity of Human nisin- and pediocin producing lactic acid bacteria to reduce intestinal Colonization by Vancomycin-resistant enterococci. Appl Environ Microbiol 74:1997–2003

    Article  CAS  Google Scholar 

  • Minandri F, Bonchi C, Frangipani E et al (2014) Promises and failures of gallium as an antibacterial agent. Future Microbiol 9(3):379–397

    Article  CAS  Google Scholar 

  • Norris JS, West water C, Schofield D (2000) Prokaroytic Gene therapy to combat Multi drug resistant bacterial infection. Gene Ther 7:723–725

    Article  CAS  Google Scholar 

  • Pourmand A, Mazer-Amirshahi M, Jasani G, May L (2017) Emerging trends in antibiotic resistance: implications for emergency medicine. Am J Emerg Med 35(8):1172–1176. https://doi.org/10.1016/j.ajem2017.03.010.Epub

    Article  PubMed  Google Scholar 

  • Qiu XQ, Wang H, Lu XF et al (2003) An Engineered multidomain bactericidal peptide as a Model for targetted antibiotics against specific bacteria. Nat Biotechnol 21:1480–1485

    Article  CAS  Google Scholar 

  • Quintilani R, Evers S, Courvalin P (1993) The vanβ gene confers various levels of self-transferable resistance to vancomycin in enterococci. J Infect Dis 167:1220–1223

    Article  Google Scholar 

  • Rebekah M, Dedrick CA, Gurerrero B et al (2019) Engineered bacteriophages for treatment of a patient with disseminated drug resistant Mycobacterium abscessus. Nat Med 25(5):730. https://doi.org/10.1038/S41591-019-0437-Z

    Article  CAS  Google Scholar 

  • Reviews on Antimicrobial Resistance. Tackling drug-resistant infections globally: final report and recommendations. 2016. Available from: https://amr-review.org/home.html

  • Reardon S (2017) Modified viruses deliver death to antibiotic resistant bacteria. Nature 546:586–587. https://doi.org/10.1038/nature2017.22173

  • Sarker SA, McCallin S, Barnetto C et al (2012) Oral T-4 like phage CockTail application to healthy adult volunteers from Bangladesh. Virol 434:222–232. https://doi.org/10.1016/j.virol.2012.09.002

    Article  CAS  Google Scholar 

  • Shi Y, YanY JW, Du B, Meng Y, Wang H, Sun J (2012) Characterization and determination of holing protein of streptococcus suis bacteriophage SMP in heterologous host. Virol J 9:70. https://doi.org/10.1186/1743-4229-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon P, David VV, Roger E, et al (2018) Cefiderocol versus imipenem-cliastatin for the treatment of complicated urinary tract infections caused by Gram negative uropathogens; a phase2 randomised, doubleblind, noninferiority trial. Lancet Infect Dis. https://doi.org/10.1016/s1473-3099(18)30554-1

    Article  CAS  Google Scholar 

  • Singla S, Harjari K, Razak WS, Katare OP, Chhibber S (2016) Phospholipid vegides encapsulated bacteriophage: a novel approach to enhance phage biodistribution. J Virol Method 236:68–76. https://doi.org/10.1186/1743-422x-9-70

    Article  CAS  Google Scholar 

  • Smith HW, Huggins MB (1983) Effectiveness of Phages in treating experimental E. coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 129(8):2659–2675

    Google Scholar 

  • Smith HW, Huggins MB, Shaw KM (1987) The control of Experimental E. coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol 133(5):1111–1126

    Google Scholar 

  • Thirabunyanon M, Thongwittaya N (2012) Protection activity of a novel probiotic strain of Bacillus subtilis against Salmonella Enteritidis infection. Res Vet Sci 93:74–81. https://doi.org/10.1016/j.rvsc.2011.08.008

    Article  CAS  Google Scholar 

  • Viswanathan VK (2014) Off label abuse of antibiotics by bacteria. Gut Microbes 5(1):3–4. https://doi.org/10.4161/gmic.2807

  • Weber Dabrowska B, Zimecki M, Mulczyk M et al (2002) Effect of phage therapy on the turnover and function of Pheripheral neutrophils. FEMS Immunol Med Microbiol 34:135–138. https://doi.org/10.1111/j.1574-695X.2002.tb00614.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Premlatha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Premlatha, M. (2019). Microbial Resistance to Antibiotics. In: Mandal, S., Paul, D. (eds) Bacterial Adaptation to Co-resistance. Springer, Singapore. https://doi.org/10.1007/978-981-13-8503-2_4

Download citation

Publish with us

Policies and ethics