Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 459))

Included in the following conference series:

Abstract

In this paper, bulk notched sample was designed to introduce crack and shear band interaction in bulk metallic glasses (BMGs). Deformation morphologies on the polished surface demonstrate that crack in BMGs might be deflected or arrested by surrounding shear bands. Distinct fracture morphologies could be observed in the interaction-induced soften region, indicating a transition of the mechanism dominating crack propagation. A hyperelastic model was used to discuss crack and shear band interaction. It’s proved that crack propagation is dominated by local elastic properties rather than global linear elastic properties due to shear induced softening and multiple shear bands. Our study suggests that multiple shear bands with a proper spacing are helpful to inhibit catastrophic crack propagation and to improve the plasticity of bulk metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashby MF, Greer AL (2006) Metallic glasses as structural materials. Scripta Mater. https://doi.org/10.1016/j.scriptamat.2005.09.051

    Article  Google Scholar 

  2. Schuh CA, Hufnagel TC, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater. https://doi.org/10.1016/j.actamat.2007.01.052

    Article  Google Scholar 

  3. Trexler MM, Thadhani NN (2010) Mechanical properties of bulk metallic glasses. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2010.04.002

    Article  Google Scholar 

  4. Inoue A, Takeuchi A (2011) Recent development and application products of bulk glassy alloys. Acta Mater. https://doi.org/10.1016/j.actamat.2010.11.027

    Article  Google Scholar 

  5. Pampillo CA (1975) Flow and fracture in amorphous alloys. J Mater Sci. https://doi.org/10.1007/bf00541403

  6. Chen MW (2008) Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Ann Rev Mater Res. https://doi.org/10.1146/annurev.matsci.38.060407.130226

    Article  Google Scholar 

  7. Zhao JX, Wu FF, Qu RT et al (2010) Plastic deformability of metallic glass by artificial macroscopic notches. Acta Mater. https://doi.org/10.1016/j.actamat.2010.06.017

    Article  Google Scholar 

  8. Zhao JX, Zhang ZF (2011) Comparison of compressive deformation and fracture behaviors of Zr- and Ti-based metallic glasses with notches. Mater Sci Eng: A. https://doi.org/10.1016/j.msea.2010.12.020

    Article  Google Scholar 

  9. Shen Y, Zheng GP (2010) Modeling of shear band multiplication and interaction in metallic glass matrix composites. Scripta Mater. https://doi.org/10.1016/j.scriptamat.2010.03.046

    Article  Google Scholar 

  10. Wang DP, Sun BA, Niu XR et al (2017) Mutual interaction of shear bands in metallic glasses. Intermetallics. https://doi.org/10.1016/j.intermet.2017.01.015

    Article  Google Scholar 

  11. Huang H, Yan J (2017) Investigating shear band interaction in metallic glasses by adjacent nanoindentation. Mater Sci Eng Struct Mater Prop Microstruct Process. https://doi.org/10.1016/j.msea.2017.08.040

    Article  Google Scholar 

  12. Huo LS, Wang JQ, Huo JT et al (2016) Interactions of shear bands in a ductile metallic glass. J Iron Steel Res Int. https://doi.org/10.1016/s1006-706x(16)30010-3

    Article  Google Scholar 

  13. Qu RT, Wang SG, Wang XD et al (2017) Revealing the shear band cracking mechanism in metallic glass by X-ray tomography. Scripta Mater. https://doi.org/10.1016/j.scriptamat.2017.02.018

    Article  Google Scholar 

  14. Conner RD, Johnson WL, Paton NE et al (2003) Shear bands and cracking of metallic glass plates in bending. J Appl Phys. https://doi.org/10.1063/1.1582555

    Article  Google Scholar 

  15. Tandaiya P, Ramamurty U, Narasimhan R (2009) Mixed mode (I and II) crack tip fields in bulk metallic glasses. J Mech Phys Solids. https://doi.org/10.1016/j.jmps.2009.07.006

    Article  Google Scholar 

  16. Flores KM, Dauskardt RH (2006) Mode II fracture behavior of a Zr-based bulk metallic glass. J Mech Phys Solids. https://doi.org/10.1016/j.jmps.2006.05.003

    Article  Google Scholar 

  17. Maass R, Birckigt P, Borchers C et al (2015) Long range stress fields and cavitation along a shear band in a metallic glass: the local origin of fracture. Acta Mater. https://doi.org/10.1016/j.actamat.2015.06.062

    Article  Google Scholar 

  18. Li W, Bei H, Gao Y (2016) Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses. Intermetallics. https://doi.org/10.1016/j.intermet.2016.09.001

    Article  Google Scholar 

  19. Pan J, Chen Q, Liu L et al (2011) Softening and dilatation in a single shear band. Acta Mater. https://doi.org/10.1016/j.actamat.2011.04.047

    Article  Google Scholar 

  20. Maass R, Samwer K, Arnold W et al (2014) A single shear band in a metallic glass: local core and wide soft zone. Appl Phys Lett. https://doi.org/10.1063/1.4900791

    Article  Google Scholar 

  21. Qu RT, Stoica M, Eckert J et al (2010) Tensile fracture morphologies of bulk metallic glass. J Appl Phys. https://doi.org/10.1063/1.3487968

    Article  Google Scholar 

  22. Jiang MQ, Ling Z, Meng JX et al (2008) Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Phil Mag. https://doi.org/10.1080/14786430701864753

    Article  Google Scholar 

  23. Wang G, Liu YH, Yu P et al (2006) Structural evolution in TiCu-based bulk metallic glass with large compressive plasticity. Appl Phys Lett. https://doi.org/10.1063/1.2423249

    Article  Google Scholar 

  24. Wang G, Zhao DQ, Bai HY et al (2007) Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Phys Rev Lett. https://doi.org/10.1103/physrevlett.98.235501

  25. Zhang ZF, Eckert J, Schultz L (2003) Difference in compressive and tensile fracture mechanisms of Zr59CU20Al10Ni8Ti3 bulk metallic glass. Acta Mater. https://doi.org/10.1016/s1359-6454(02)00521-9

    Article  Google Scholar 

  26. Wang G, Chan KC, Xu XH et al (2008) Instability of crack propagation in brittle bulk metallic glass. Acta Mater. https://doi.org/10.1016/j.actamat.2008.08.005

    Article  Google Scholar 

  27. Buehler MJ, Gao HJ (2006) Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature. https://doi.org/10.1038/nature04408

    Article  Google Scholar 

  28. Buehler MJ, Abraham FF, Gao HJ (2003) Hyperelasticity governs dynamic fracture at a critical length scale. Nature. https://doi.org/10.1038/nature02096

    Article  Google Scholar 

  29. Li J, Wang YW, Yi J et al (2016) Strain-energy transport during fracture of metallic glasses. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2016.04.117

    Article  Google Scholar 

  30. Sun BA, Wang WH (2015) The fracture of bulk metallic glasses. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2015.05.002

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (NPU). The authors thank the materials supports from Liquidmetal® Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, B., Zhou, D., Hou, B., Zhang, S., Li, Y. (2019). Crack and Shear Band Interaction in Bulk Metallic Glasses. In: Zhang, X. (eds) The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018). APISAT 2018. Lecture Notes in Electrical Engineering, vol 459. Springer, Singapore. https://doi.org/10.1007/978-981-13-3305-7_245

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3305-7_245

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3304-0

  • Online ISBN: 978-981-13-3305-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics