
Chapter 10
Methods in Risk Analysis

Eiki Yamakawa and Toshihiro Kawaguchi

Abstract To protect our lives and properties from disasters and accidents, we need
to identify sources of risks, acknowledge weaknesses in our societies and ourselves,
and be readily prepared in both hardware and software. We frequently express the
odds of events taking place with probabilistic numbers; thus, we must have at least
the minimum knowledge in mathematical statistics. This chapter first introduces
quantitative evaluations of probabilities of events to cause damages to us and the
magnitudes of the damages. We will then learn how to analyze and estimate risks
using the evaluations. The chapter closes with decision-making methods in finding
the best measures that minimize the risks.
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10.1 Evaluation and Probabilities of Risks

When natural disasters, like flooding or earthquakes, or accidents caused by
physical or chemical phenomena take place, their formation of outbreak greatly
differs with environmental factors and chances. For evaluating uncertain events
like disasters or accidents, we generally apply the function called measure that
maps the set of results of interest to a nonnegative real number to express its
“magnitude.”When we express the set for the entire results that can take place with
Ω, and its subsets with E1, E2, the function μ that satisfies the following conditions
is called the fuzzy measure.
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μ ∅ð Þ ¼ 0 ð10:1Þ
μ Ωð Þ ¼ 1 ð10:2Þ

E1 � E2 ) μ E1ð Þ � μ E2ð Þ: ð10:3Þ

The first two conditions show that when we set the size of the set of all possible
results to 1, fuzzy measure is a function that expresses the ratio of the results of
interest occupy. The third condition is called monotonicity, and it shows that the
evaluation goes up when more results are included.

The characteristics of measures depend on how measures of unions of sets are
defined. When parameter λ is a real number larger than �1, a fuzzy measure that
satisfies the next condition is called λ-fuzzy measure.

E1 \ E2 ¼ ∅ ) μ E1 [ E2ð Þ ¼ μ E1ð Þ þ μ E2ð Þ þ λμ E1ð Þμ E2ð Þ: ð10:4Þ

Probabilities that we are most familiar with are nothing but λ-fuzzy measures with
λ ¼ 0. Probabilities have complete additivity expressed with the following equation:

E1 \ E2 ¼ ∅ ) μ E1 [ E2ð Þ ¼ μ E1ð Þ þ μ E2ð Þ: ð10:5Þ

Complete additivity is a basic property to derive many characteristics about
probability and is important for easily analyzing and estimating risks; however, it
often conflicts with human psychology that wants to avoid uncertainty. The λ-fuzzy
measure is a measure that generalizes complete additivity required to probability. In
fact, when the parameter λ takes a positive number, the measure shows the property
called super-additivity with the expression:

E1 \ E2 ¼ ∅ ) μ E1 [ E2ð Þ > μ E1ð Þ þ μ E2ð Þ, ð10:6Þ

and the property is sub-additive when the parameter λ takes a negative value
expressed:

E1 \ E2 ¼ ∅ ) μ E1 [ E2ð Þ < μ E1ð Þ þ μ E2ð Þ: ð10:7Þ

In classic probability theory, when a trial results in N equally probable cases, and
the number of events of interest is r, the occurrence probability of the events is
defined r/N. For example, rolling a cubic die and recording the result have six
possible outcomes. With a proper die, all results have equal chances; thus, the
possibility of getting 1 is 1/6. The occurrence probability of an event equals the
relative frequency of the event occurrence with an infinite number of independent
trials. Natural phenomena, however, like flood or earthquake often break out with
some events in combination, and their occurrence usually depends on past records;
thus, we need to proceed carefully in applying probabilistic models to their risks.
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We can easily calculate the probability of accidents of a person that flies on an
airplane everyday by applying the method of “probability of the complement of an
event” that we learn in high school. Setting the probability of encountering an
accident with a single flight to p, and the number of flights to n, the probability of
not being involved in an accident with a single flight is 1 � p. The probability, thus,
of not encountering an accident at all with n flights is (1 � p)n. Subtracting this
probability from the entire probability of 1, we find the probability of being involved
with at least one accident is 1 � (1 � p)n. The frequency today of airplane accidents
is about 0.3 times for each million flights; thus, if a person flies on an airplane
everyday for 80 years, the probability we are looking for is:

1� 1� 0:3
1,000, 000

� �365�80

� 0:0087, ð10:8Þ

that is about 0.87%.
A variable that changes its values probabilistically is called a random variable,

and a random variable that changes its chances with time is called a stochastic
process. When the set of values that a random variable can take, like in the case of
amount of rainfall or earthquake magnitude, forms a section of continuous real
values. In this case, the distribution function that defines the probability that the
value is less than a threshold or its derivative, the probabilistic density function,
gives an idea of what the probability distribution is like. The sum of many mutually
independent random variables forms a normal distribution. Normal distributions are
often used to model probabilistic random phenomena like measurement errors. The
probabilistic density function for a normal distribution is bilaterally symmetric
around the average value. A random variable with normal distribution is most likely
to take a value near the average, and the probability drops as the value shifts away
from the average.

On the other hand, for stochastic processes with increasing occurrence probability
with time, like for the case of machine failure, the random variable that expresses the
machine life or time to failure follows the Weibull distribution. If the distribution
function or the probabilistic density function is known, we can find the confidence
interval about characteristic values of the average or variance without having to
observe the phenomena for an infinite number of times.

Odds is a measure that we often use in comparing the likelihood of events. We
can calculate the odds by dividing the number of cases that the event of interest is
taking place by the number of cases it is not. If the occurrence probability of event is
known, the odds for the event is the occurrence probability divided by the proba-
bility the event does not occur. For example, assume there are ten test procedures for
a certain illness and A was positive with five tests, whereas B had eight positive
results. A’s odds is 5/(10–5) ¼ 1 and B’s odds 8/(10–8) ¼ 4. B’s odds is 4 times that
of A and the possibility of B having the illness is 4 times that of A. In general, the

10 Methods in Risk Analysis 115



odds of an event of interest divided by that of a reference event is called the odds
ratio. As we will discuss in the next section, the odds ratio is often used in
statistically estimating the magnitude of risk for an event.

In quantitatively evaluating risk, we also need to decide how to calculate the
magnitude of damage. When calculating casualty deduction for income tax filing,
the following equation rationally determines the property damage from a disaster
based on current value:

damage amount½ � ¼ acquisition cost½ � � depreciation from acquisition to damage½ �ð Þ
� damage ratio½ �:

On the other hand, damage to facilities and buildings is often calculated with

damage amount½ � ¼ replacement cost½ � � damage ratio½ �,

because the cost for reconstruction has to enter the equation. In case of a major
disaster that caused damage to transportation systems, the indirect cost of opportu-
nity loss for being unable to use the systems sometimes enters the calculation in
addition to the direct cost of reconstruction.

Among objects lost with tsunami or fires, there are things like “photo album of
memories” that are difficult to give monetary evaluation, i.e., things that cause big
psychological pain when lost. In case it is difficult to directly calculate the absolute
value of a property, comparing the relative value to evaluations of other properties
can lead to absolute values. As we can easily verify, when there are n pieces of
property, 1, . . ., n, with values w1,. . .,wn, the n � n matrix with (i, j)-th entry wi/wj

has the maximum eigenvalue n, and the corresponding eigenvector is (w1, . . .,wn)
T.

Then for each pair of (i, j) from the set i, j 2 {1, . . ., n},i 6¼ j, having the owner
answer how many times property i is worth property j and set the answer to aij. The
diagonal components of the matrix are 1, and the eigenvector corresponding to the
maximum eigenvalue of this matrix is a multiple of vector (w1, . . .,wn)

T of absolute
values of properties 1, . . ., n.

10.2 Analysis and Forecast Models of Risks

We can estimate occurrence probability of an independent event by counting the
number of occurrences of the event of interest during a large number of trials. In fact,
if the event of interest took place X times while repeating the trial N times, with a
large enough N and X/N at a reasonable value, the occurrence probability p of the
event of interest is within the following range with a 95% confidence level:
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X

N
� 1:96s � p � X

N
þ 1:96s: ð10:9Þ

In this equation, s is standard error expressed with the following equation:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X N � Xð Þ

N3

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
N 1� X

N

� �
N

s
: ð10:10Þ

In case an event of interest took place 38 times out of 380 independent trials, the
95% confidence interval for the occurrence probability is evaluated at 0.07–0.13.
From the definition of standard error, quadrupling the number of trials N will halve
the confidence interval for the occurrence probability p.

When the occurrence probability is extremely small, like in the case of disasters
or accidents, the number of occurrences of the event of interest during a large
number of repeated trials is of interest. In general, during n independent trials of
an event with occurrence probability p, binominal distribution gives the probability
of the event of interest to occur k times:

Bn,p kð Þ ¼ nC
nkpk 1� pð Þn�k ¼ n!

k! n� kð Þ! p
k 1� pð Þn�k: ð10:11Þ

For example, if we set the probability p of getting 1 with one throw of die at
p¼ 1/6, we expect to get 1 once with six throws of the die. The probability of getting
1 exactly once, however, is only B6,1/6(1)’ 0.402, twice B6,1/6(2)’ 0.201, and never
B6,1/6(0) ’ 0.335.

On the other hand, when n is sufficiently large and p is sufficiently small, the
Poisson distribution approximates the probability of the event of interest occurring
k times at

Pλ kð Þ ¼ λk

k!
e�λ: ð10:12Þ

The parameter λ is the expectation for the number of times the event of interest
takes place and is calculated by λ ¼ np. The constant e is Napier’s constant, and it
approximately equals 2.72. For example, with a machine that produces 1 defective
product for every 500 pieces, the probability of finding at least 1 defective product in
1000 pieces produced by this machine is:

1� P1000=500 0ð Þ ¼ 1� 1
e2

’ 0:865: ð10:13Þ

In general, there are multiple factors that cause a damage, and we often find
different risk sizes for these factors. If you have two groups, one with factor A and
the other without, continuous observation of the two counting the number of cases
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with damaging result B can lead to statistical evaluation of how factor A affects the
occurrence of result B. With observation results shown in Table 10.1, the risk of
result B occurring with factor A is a/l, whereas that without factor A is c/(n � l );
thus, the risk of facing result B when factor A is present is:

q ¼ a

l
� c

n� l
¼ a cþ dð Þ

c aþ bð Þ ð10:14Þ

times the risk without factor A. The value q, in general, is called relative risk or risk
ratio.

When the time to see whether result B takes place or not takes too long, there are
cases that the risk ratio can be estimated by comparing the number of objects with
and without factor A for objects with and without result B. With the observation
results in Table 10.1, the odds of factor A in the group with result B is a/c, and that
for the group without result B is b/d. Thus, the odds ratio of the former to the latter is:

r ¼ a

c
� b

d
¼ ad

bc
: ð10:15Þ

When the probability of occurrence of result B is extremely low, i.e.,
when a 	 b, c 	 d, the odds ratio r is a good approximation of risk ratio q.

When Table 10.1 is not the observation results of the entire investigation objects,
but of n samples, randomly picked out from the parent population, the odds ratio is
within the range:

ad

bc
� e1:96s � r � ad

bc
� e1:96s ð10:16Þ

with a probability of 95%. The symbol s is standard deviation defined with the
following equation:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a
þ 1
b
þ 1

c
þ 1
d
:

r
ð10:17Þ

For example, if a ¼ b ¼ c ¼ d ¼ 460, e1.96s ’ 1.2 and accurate estimation of the
odds ratio will require a fairly large sample size.

Table 10.1 Cross table of
causal correlation

Result B

TotalOccurred Did not occur

Factor A With a b l

Without c d n�l

Total m n�m n
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When the factors that cause damaging results include quantitative data, we can
analyze the risk with generalized linear model. Generalized linear model estimates
the occurrence probability p of result B based on observations x1,. . .,xn for factors
A1,. . .,An, with the following equation:

p ¼ 1
1þ e�z

, z ¼ a1x1 þ 
 
 
 þ anxn þ h: ð10:18Þ

The calculation of determining the coefficients a1,. . .,an and constant h from
observations of factors A1,. . .,Anwith result B occurrence and those without result B
occurrence is called logistic regression analysis. For generalized linear models, the
odds p/(1 � p) of result B is e�z; thus, when factor Ai increases by 1 unit, the risk of
occurrence of result B is e�z times in terms of odds ratio.

10.3 Decision-Making for Risk Minimization

Mathematical programming is one of the methodologies applied in rationally solving
decision-making problems that we encounter in various fields of natural sciences and
social sciences. Mathematical programming formulates the decision-making prob-
lem into a mathematical optimization problem to maximize or minimize the value of
the objective function with variables subject to some constraints. Thus, by setting the
policies for disaster management and accident prevention to decision variables, the
physical and social conditions that govern the policies to constraints, and the sizes of
possible risks under the policies to the objective function, we can solve the decision-
making problem within the framework of mathematical programming.

When the objective function is linear and the constraints are a system of linear
equations or inequalities, the optimization problem is called linear programming and
is expressed in the following manner:

minimize : cTx
subject to : Ax ¼ b, x � 0:

For this set of formulae, x is the vector of decision variables, A is the parameter
matrix, and b and c are parameter vectors. Setting the sizes of risks with accidents or
disasters is difficult, and parameters A, b, and c have uncertainties. Especially when
parameters A and b have uncertainties, both sides of the equation Ax ¼ b are
uncertain; thus, it takes clarifying the constraints that require the two sides are
equal for solving the linear programming problem. We then turn the problem into
a “Chance Constraining Problem” that looks for the decision variables x that
minimize the objective function cTx under the constraints that the probability of
the equation Ax ¼ b or its fuzzy measure is not less than a certain threshold or the
“recourse problem” that adds the magnitude of the residual error Ax � b to the
objective function instead of equation Ax ¼ b.
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If the range of parameters A and b are known, the method to find decision
variables x that minimize the objective function cTx while the equation is satisfied
whatever values A and b take is another effective approach (“robust optimization”).
In assessing the effectiveness of risk management, “worst case analysis” is also well
practiced that identifies the case that maximizes the objective function cTx among
optimized results of linear programming problems for all possible combinations of
parameters A and b. Worst case analysis takes solving the two-level mathematical
programming problem that have the original linear programming problem in its
lower level.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter or
parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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