Skip to main content

Microalgal Treatment of Alcohol Distillery Wastewater

  • Chapter
  • First Online:

Abstract

Microalgae possess unique metabolic mechanisms making them highly efficient at removal of the nutrients from and decomposition of organic components of different wastewater types including alcohol distillery wastewater. Microalgae generate dissolved oxygen increasing the efficiency of the alcohol distillery wastewater treatment. Microalgal cells take up and store large amounts of nitrogen (N) and, especially, phosphorus (P). This process induces the nutrient removal efficiency and generates the valuable algal biomass enriched in N and P. Nevertheless, the microalgae-based alcohol distillery wastewater treatment processes are much less established in comparison with conventional anaerobic and aerobic approaches based on bacteria and other heterotrophic organisms. It is not likely that microalgal treatment, either in the open ponds or in the closed systems, can replace completely the conventional alcohol distillery wastewater treatment methods but will complement the latter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe K, Takahashi E, Hirano M (2008) Development of laboratory-scale photobioreactor for water purification by use of a biofilter composed of the aerial microalga Trentepohlia aurea (Chlorophyta). J Appl Phycol 20:283–288. https://doi.org/10.1007/s10811-007:9245-9

    Article  CAS  Google Scholar 

  • Alcántara C, Fernández C, García-Encina P, Muñoz R (2014) Mixotrophic metabolism of Chlorella sorokiniana and algal-bacterial consortia under extended dark-light periods and nutrient starvation. Appl Microbiol Biotechnol 1–12:6125–6125. https://doi.org/10.1007/s00253-014

    Article  Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726

    Article  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Benemann J (1992) Microalgae aquaculture feeds. J Appl Phycol 4:233–245. https://doi.org/10.1007/bf02161209

    Article  Google Scholar 

  • Boelee NC, Temmink H, Janssen M, Buisman CJ, Wijffels RH (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45:5925–5933. https://doi.org/10.1016/j.watres.2011.08.044

    Article  CAS  Google Scholar 

  • Boelee N, Temmink H, Janssen M, Buisman C, Wijffels R (2014) Balancing the organic load and light supply in symbiotic microalgal–bacterial biofilm reactors treating synthetic municipal wastewater. Ecol Eng 64:213–221

    Article  Google Scholar 

  • Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35:431–441

    Article  CAS  Google Scholar 

  • Chisti Y (2010) Fuels from microalgae. Biofuels 1:233–235

    Article  CAS  Google Scholar 

  • Chowdhary P, Yadav A, Kaithwas G, Bharagava RN (2017) Distillery wastewater: a major source of environmental pollution and its biological treatment for environmental safety. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer International, Cham, pp 409–435

    Chapter  Google Scholar 

  • Cohen Z, Khozin-Goldberg I (2010) Searching for PUFA-rich microalgae. In: Cohen Z, Ratledge C (eds) Single cell oils2nd edn. American Oil Chemists’ Society, Champaign, pp 201–224

    Chapter  Google Scholar 

  • Coppens J, Decostere B, Van Hulle S et al (2014) Kinetic exploration of nitrate-accumulating microalgae for nutrient recovery. Appl Microbiol Biotechnol 98:8377–8387. https://doi.org/10.1007/s00253-014-5854-9

    Article  CAS  Google Scholar 

  • Crawford M et al (2003) The potential role for arachidonic and docosahexaenoic acids in protection against some central nervous system injuries in preterm infants. Lipids 38:303–315

    Article  CAS  Google Scholar 

  • de Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  Google Scholar 

  • de Bashan LE, Hernandez J-P, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474. https://doi.org/10.1016/j.watres.2003.09.022

    Article  CAS  Google Scholar 

  • de Mazancourt C, Schwartz MW (2012) Starve a competitor: evolution of luxury consumption as a competitive strategy. Theor Ecol 5:37–49

    Article  Google Scholar 

  • Dhankhar J, Kadian SS, Sharma A (2012) Astaxanthin: a potential carotenoid. Int J Pharm Sci Res 3:1246–1259

    CAS  Google Scholar 

  • El-Sayed AF (1998) Total replacement of fish meal with animal protein sources in Nile tilapia, Oreochromis niloticus (L.), feeds. Aquac Res 29:275–280

    Article  Google Scholar 

  • Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329–335

    Article  CAS  Google Scholar 

  • Havlik I, Lindner P, Scheper T et al (2013) On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends Biotechnol 31(7):406–414. https://doi.org/10.1016/j.tibtech.2013.04.005

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Ip S, Bridger J, Chin C et al (1982) Algal growth in primary settled sewage: the effects of five key variables. Water Res 16:621–632

    Article  CAS  Google Scholar 

  • Juwarkar A, Dutta S (1990) Impact of distillery effluent application to land on soil microflora. Environ Monit Assess 15:201–210

    Article  CAS  Google Scholar 

  • Kalavathi DF, Uma L, Subramanian G (2001) Degradation and metabolization of the pigment—melanoidin in distillery effluent by the marine cyanobacterium Oscillatoria boryana BDU 92181. Enzym Microb Technol 29:246–251

    Article  Google Scholar 

  • Kannan A, Upreti RK (2008) Influence of distillery effluent on germination and growth of mung bean (Vigna radiata) seeds. J Hazard Mater 153:609–615

    Article  CAS  Google Scholar 

  • Knothe G, Matheaus AC, Ryan III TW (2003) Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82:971–975

    Article  CAS  Google Scholar 

  • Kondili EM, Kaldellis JK (2007) Biofuel implementation in East Europe: current status and future prospects. Renew Sust Energ Rev 11:2137–2151

    Article  Google Scholar 

  • Kumar S, Gopal K (2001) Impact of distillery effluent on physiological consequences in the freshwater teleost Channa punctatus. Bull Environ Contam Toxicol 66:617–622

    CAS  Google Scholar 

  • Kumar S, Sahay S, Sinha M (1995) Bioassay of distillery effluent on common guppy, Lebistes reticulatus (Peter). Bull Environ Contam Toxicol 54:309–316

    CAS  Google Scholar 

  • Kumar V, Wati L, FitzGibbon F et al (1997) Bioremediation and decolorization of anaerobically digested distillery spent wash. Biotechnol Lett 19:311–314

    Article  CAS  Google Scholar 

  • Lau P, Tam N, Wong Y (1995) Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 89:59–66

    Article  CAS  Google Scholar 

  • Lavoie A, de la Noüe J (1985) Hyperconcentrated cultures of Scenedesmus obliquus: a new approach for wastewater biological tertiary treatment. Water Res 19:1437–1442. https://doi.org/10.1016/0043-1354(85)90311-2

    Article  CAS  Google Scholar 

  • Mallick N, Mandal S, Singh AK et al (2012) Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J Chem Technol Biotechnol 87:137–145. https://doi.org/10.1002/jctb.2694

    Article  CAS  Google Scholar 

  • Mara D, Pearson H (1986) Artificial freshwater environment: waste stabilization ponds. In: Rehm H, Reed G (eds) Biotechnology. A comprehensive treatise. Verlagsgesellschaft, Weinheim, pp 177–206

    Google Scholar 

  • Mata TM, Melo AC, Simões M et al (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 107:151–158. https://doi.org/10.1016/j.biortech.2011.12.109

    Article  CAS  Google Scholar 

  • Meza B, de Bashan LE, Hernandez JP et al (2015) Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense. Res Microbiol 166:399–407. https://doi.org/10.1016/j.resmic.2015.03.001

    Article  CAS  Google Scholar 

  • Mohana S, Acharya BK, Madamwar D (2009) Distillery spent wash: treatment technologies and potential applications. J Hazard Mater 163:12–25

    Article  CAS  Google Scholar 

  • Mulbry W, Westhead EK, Pizarro C et al (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96:451–458

    Article  CAS  Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815. https://doi.org/10.1016/j.watres.2006.06.011

    Article  CAS  Google Scholar 

  • Nagamani B, Ramasamy K (1999) Biogas production technology: an Indian perspective. Curr Sci 77:44–55

    CAS  Google Scholar 

  • Nurdogan Y, Oswald WJ (1996) Tube settling of high-rate pond algae. Water Sci Technol 33:229–241

    Article  CAS  Google Scholar 

  • Olguín EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    Article  CAS  Google Scholar 

  • Oswald WJ (1988) Micro-algae and waste-water treatment

    Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civ Eng 122:73–105

    Google Scholar 

  • Pandey R, Malhotra S, Tankhiwale A et al (2003) Treatment of biologically treated distillery effluent-a case study. Int J Environ Stud 60:263–275

    Article  CAS  Google Scholar 

  • Pant D, Adholeya A (2007) Biological approaches for treatment of distillery wastewater: a review. Bioresour Technol 98:2321–2334. https://doi.org/10.1016/j.biortech.2006.09.027

    Article  CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42. https://doi.org/10.1016/j.biortech.2010.06.158

    Article  CAS  Google Scholar 

  • Patel A, Pawar R, Mishra S, Tewari A (2001) Exploitation of marine cyanobacterial for removal of colour from distillery effluent. Indian J Environ Protect 21:1118–1121

    CAS  Google Scholar 

  • Perez-Garcia O, Escalante FME, de Bashan LE et al (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36. https://doi.org/10.1016/j.watres.2010.08.037

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25. https://doi.org/10.1016/j.biortech.2010.06.035

    Article  CAS  Google Scholar 

  • Powell N, Shilton A, Chisti Y et al (2009) Towards a luxury uptake process via microalgae – defining the polyphosphate dynamics. Water Res 43:4207–4213. https://doi.org/10.1016/j.watres.2009.06.011

    Article  CAS  Google Scholar 

  • Powell N, Shilton A, Pratt S et al (2011) Phosphate release from waste stabilisation pond sludge: significance and fate of polyphosphate. Water Sci Technol 63:1689

    Article  CAS  Google Scholar 

  • Raposo M, Oliveira SE, Castro PM, Bandarra NM, Morais RM (2010) On the utilization of microalgae for brewery effluent treatment and possible applications of the produced biomass. J Inst Brew 116:285–292

    Article  CAS  Google Scholar 

  • Richmond A (2004) Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512:33–37

    Article  Google Scholar 

  • Saha N, Balakrishnan M, Batra V (2005) Improving industrial water use: case study for an Indian distillery resources. Conserv Recycl 43:163–174

    Article  Google Scholar 

  • Satyawali Y, Balakrishnan M (2008) Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. J Environ Manag 86:481–497. https://doi.org/10.1016/j.jenvman.2006.12.024

    Article  CAS  Google Scholar 

  • Scott EL, Kootstra AMJ, Sanders JPM (2010) Perspectives on bioenergy and biofuels. Sustainable biotechnology, pp 179–194

    Chapter  Google Scholar 

  • Simate GS, Cluett J, Iyuke SE et al (2011) The treatment of brewery wastewater for reuse: state of the art. Desalination 273:235–247

    Article  CAS  Google Scholar 

  • Singh PN, Robinson T, Singh D et al (2004) Treatment of industrial effluents. Distillery effluent. In: Pandey A (ed) Concise encyclopedia of bioresource technology. Food Products Press, New York, pp 135–142

    Google Scholar 

  • Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88

    Article  Google Scholar 

  • Solovchenko A, Lukyanov A, Vasilieva S et al (2013) Possibilities of bioconversion of agricultural waste with the use of microalgae. Moscow Univ Biol Sci Bull 68:206–215

    Article  Google Scholar 

  • Solovchenko A et al (2014) Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Res-Biomass Biofuels Bioprod 6:234–241. https://doi.org/10.1016/j.algal.2014.01.002

    Article  Google Scholar 

  • Solovchenko A, Verschoor AM, Jablonowski ND, Nedbal L (2016) Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnol Adv 34:550–564

    Article  CAS  Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions. Biosyntheses Funct Mar Drugs 9:1101–1118

    Article  CAS  Google Scholar 

  • Travieso L, Benitez F, Dupeyron R (1999) Algae growth potential measurement in distillery wastes. Bull Environ Contam Toxicol 62:483–489

    Article  CAS  Google Scholar 

  • Travieso L, Benítez F, Sanchez E et al (2008a) Assessment of a microalgae pond for post-treatment of the effluent from an anaerobic fixed bed reactor treating distillery. Wastewater Environ Technol 29:985–992

    Article  CAS  Google Scholar 

  • Travieso L, Benítez F, Sánchez E et al (2008b) Performance of a laboratory-scale microalgae pond for secondary treatment of distillery wastewaters. Chem Biochem Eng Q 22:467–473

    CAS  Google Scholar 

  • Travieso L, Benítez F, Sánchez E et al (2008c) Assessment of a microalgae pond for post-treatment of the effluent from an anaerobic fixed bed reactor treating distillery. Wastewater Environ Technol 29:985–992. https://doi.org/10.1080/09593330802166228

    Article  CAS  Google Scholar 

  • Valderrama LT, Del Campo CM, Rodriguez CM et al (2002) Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula. Water Res 36:4185–4192

    Article  CAS  Google Scholar 

  • Van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30:1405–1424. https://doi.org/10.1016/j.biotechadv.2012.02.015

    Article  CAS  Google Scholar 

  • Vasilieva S, Lobakova E, Lukyanov A et al (2016) Immobilized microalgae in biotechnology Moscow University. Biol Sci Bull 71:170–176

    Google Scholar 

  • Von Sperling M (2007) Waste stabilisation ponds. IWA publishing, London

    Google Scholar 

  • Walsh BJ et al (2015) New feed sources key to ambitious climate targets. Carbon Balance Manag 10:26. https://doi.org/10.1186/s13021-015-0040-7

    Article  CAS  Google Scholar 

  • Wang X, Lin H, Gu Y (2012) Multiple roles of dihomo-gamma-linolenic acid against proliferation diseases. Lipids Health Dis 11:25

    Article  CAS  Google Scholar 

  • Yang C-f, Ding Z-y, Zhang K-c (2008) Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation. World J Microbiol Biotechnol 24:2919–2925. https://doi.org/10.1007/s11274-008-9833-0

    Article  CAS  Google Scholar 

  • Zittelli G, Biondi N, Rodolfi L et al (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology2nd edn. Blackwell, Oxford, pp 225–266

    Chapter  Google Scholar 

Download references

Acknowledgments

Financial support of the Russian Ministry of Science and Education (grant 14.616.21.0080) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Solovchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solovchenko, A. (2019). Microalgal Treatment of Alcohol Distillery Wastewater. In: Bharagava, R., Chowdhary, P. (eds) Emerging and Eco-Friendly Approaches for Waste Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-8669-4_9

Download citation

Publish with us

Policies and ethics