Skip to main content

Probing the Structure and Dynamics of Cells, Cell Components and Endogenous Nanoparticles Under Extreme Conditions with Neutrons

  • Chapter
  • First Online:
Biological, Physical and Technical Basics of Cell Engineering

Abstract

Biological cells are fascinating systems of inconceivable complexity, which fulfil various functions. Among others, cells are able to execute motions, to produce heat, to breathe, to subsist, to grow wand proliferate and to die. Science aims at deciphering the different functionalities and activities of, and inside, the cells and how their different components participate to them. The methods employed are also versatile, as optical approaches by microscopies, modelling and simulations, spectroscopies, thermodynamic measurements and much more, each procuring some pieces of the puzzle. Although the different investigations are laborious and time consuming, research is the only way to disentangle the world at the microscopic level surrounding us. In the present study, we cite a few examples of studies on whole cells and cell components by different neutron scattering techniques to illustrate the modern possibilities. As neutrons are not charged, they have interactions directly with the atomic nuclei and give access to structural as well as dynamical information through coherent and incoherent neutron scattering. These techniques can be applied to the same samples and under identical experimental conditions so that we can gain knowledge on the correlations between structural and dynamical functions. Here, we present applications of neutron experiments to decipher the behaviour of complex biological samples, which study was not possible by other probes. The first example focuses on the molecular basis of the adaptation of cells living under extreme conditions, such as Archaea from the deep sea hydrothermal vents which experience both high temperature and high pressure stresses. Molecular dynamics seems to play a key role for adaptation as it is increased for the proteome of cells from such environment, in contrast to common expectation. In the second example, we exposed endogenous nanoparticles, low density lipoproteins, to high hydrostatic pressure, to shed light on the flexibility and stability of such particles under extreme conditions. Here we found that the native particle was surprisingly resistant to pressure application, concerning both dynamics and structure, while a modified form thereof was not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B., Jr., et al. (2012). A whole-cell computational model predicts phenotype from genotype. Cell, 150, 389–401. https://doi.org/10.1016/j.cell.2012.05.044.

    Article  Google Scholar 

  2. Schulz, R., Lindner, B., Petridis, L., & Smith, J. C. (2009). Scaling of multimillion-atom biological molecular dynamics simulation on a petascale supercomputer. Journal of Chemical Theory and Computation, 5, 2798–2808. https://doi.org/10.1021/ct900292r.

    Article  Google Scholar 

  3. Nam, D., Park, J., Gallagher-Jones, M., Kim, S., Kim, S., Kohmura, Y., et al. (2013). Imaging fully hydrated whole cells by coherent x-ray diffraction microscopy. Physical Review Letters, 110(9), 098103. https://doi.org/10.1103/PhysRevLett.110.098103.

    Article  Google Scholar 

  4. Jiang, H., Song, C., Chen, C. C., Xu, R., Raines, K. S., Fahimian, B. P., et al. (2010). Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proc Natl Acad Sci U S A, 107(25), 11234–11239. https://doi.org/10.1073/pnas.1000156107.

    Article  Google Scholar 

  5. Tehei, M., Franzetti, B., Madern, D., Ginzburg, M., Ginzburg, B. Z., Giudici-Orticoni, M. T., et al. (2004). Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Reports, 5(1), 66–70. https://doi.org/10.1038/sj.embor.7400049.

    Article  Google Scholar 

  6. Jasnin, M. (2009). Atomic-scale dynamics inside living cells explored by neutron scattering. Journal of the Royal Society, Interface, 6(Suppl 5), S611–S617. https://doi.org/10.1098/rsif.2009.0144.focus.

    Article  Google Scholar 

  7. Luef, B., Fakra, S. C., Csencsits, R., Wrighton, K. C., Williams, K. H., Wilkins, M. J., et al. (2013). Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. ISME Journal, 7(2), 338–350. https://doi.org/10.1038/ismej.2012.103.

    Article  Google Scholar 

  8. Hajj, B., Wisniewski, J., El Beheiry, M., Chen, J., Revyakin, A., Wu, C., et al. (2014). Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy. Proc Natl Acad Sci U S A, 111(49), 17480–17485. https://doi.org/10.1073/pnas.1412396111.

    Article  Google Scholar 

  9. Gabel, F., Bicout, B. J., Lehnert, U., Tehei, M., Weik, M., & Zaccai, G. (2002). Proteins dynamics studied by neutron scattering. Quaterly reviews of biophysics, 35(4), 327–367.

    Article  Google Scholar 

  10. Kurr, M., Huber, R., Konig, H., Jannasch, H. W., Fricke, H., Trincone, A., et al. (1991). Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Archives of Microbiology, 156, 239–247.

    Article  Google Scholar 

  11. Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., et al. (2008). Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences of the United States of America, 105, 10949–10954.

    Article  Google Scholar 

  12. Vauclare, P., Marty, V., Fabiani, E., Martinez, N., Jasnin, M., Gabel, F., et al. (2015). Molecular adaptation and salt stress response of Halobacterium salinarum cells revealed by neutron spectroscopy. Extremophiles, 19(6), 1099–1107. https://doi.org/10.1007/s00792-015-0782-x.

    Article  Google Scholar 

  13. Lund, P., Tramonti, A., & De Biase, D. (2014). Coping with low pH: Molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews, 38(6), 1091–1125. https://doi.org/10.1111/1574-6976.12076.

    Article  Google Scholar 

  14. Bée, M. (1988). Quasielastic neutron scattering: Principles and applications in solid state chemistry. Adam Hilger, Philadelphia: Biology and Materials Science.

    Google Scholar 

  15. Sears, V. F. (1992). Neutron scattering lengths and cross sections. Neutron News, 3, 26–37.

    Article  Google Scholar 

  16. http://www.ill.eu/instruments-support/instruments-groups/instruments/in6/description/instrument-layout/.

  17. http://www.ill.eu/instruments-support/instruments-groups/instruments/in5/description/instrument-layout/.

  18. Natali, F., Peters, J., Russo, D., Barbieri, S., Chiapponi, C., Cupane, A., et al. (2008). IN13 backscattering spectrometer at ILL: Looking for motions in biological macromolecules and organisms. Neutron News, 19(4), 14–18. https://doi.org/10.1080/10448630802474083.

    Article  Google Scholar 

  19. Strunz, P., Mortensen, K., & Janssen, S. (2004). SANS-II at SINQ: Installation of the former Riso-SANS facility. Phys B - Cond Matt, 350, E783–E786.

    Article  Google Scholar 

  20. Bée, M. (2003). Localized and long-range diffusion in condensed matter: State of the art of QENS studies and future prospects. Chemical Physics, 292(2–3), 121–141.

    Article  Google Scholar 

  21. Doster, W. (2006). Dynamical structural distributions in proteins. Physica B, 385–386, 831–834.

    Article  Google Scholar 

  22. Peters, J., Trapp, M., Hughes, D., Rowe, S., Demé, B., Laborier, J.-L., et al. (2011). High hydrostatic pressure equipment for neutron scattering studies of samples in solutions. High Pressure Research, 32(1), 97–102.

    Article  Google Scholar 

  23. Lelièvre-Berna, E., Demé, B., Gonthier, J., Gonzales, J. P., Maurice, J., Memphis, Y., et al. (2017). 700 MPa sample stick for studying liquid samples or solid-gas reactions down to 1.8 K and up to 550 K. Journal of Neutron Research, 19, 77–84.

    Article  Google Scholar 

  24. Sidorov, V. A., & Sadykov, R. A. (2005). Hydrostatic limits of Fluorinert liquids used for neutron and transport studies at high pressure. Journal of Physics: Condensed Matter, 17, 3005–3008.

    Google Scholar 

  25. Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences U S A, 87(12), 4576–4579.

    Article  Google Scholar 

  26. Rampelotto, P. H. (2013). Extremophiles and extreme environments. Life (Basel), 3(3), 482–485. https://doi.org/10.3390/life3030482.

    Article  Google Scholar 

  27. Albers, S. V., & Meyer, B. H. (2011). The archaeal cell envelope. Nature Reviews Microbiology, 9(6), 414–426. https://doi.org/10.1038/nrmicro2576.

    Article  Google Scholar 

  28. Jebbar, M., Franzetti, B., Girard, E., & Oger, P. (2015). Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles, 19(4), 721–740. https://doi.org/10.1007/s00792-015-0760-3.

    Article  Google Scholar 

  29. Atomi, H., Fukui, T., Kanai, T., Morikawa, M., & Imanaka, T. (2004). Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea, 1, 263–267.

    Article  Google Scholar 

  30. Marteinsson, V. T., Birrien, J. L., Reysenbach, A. L., Vernet, M., Marie, D., Gambacorta, A., et al. (1999). Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 49(2), 351–359. https://doi.org/10.1099/00207713-49-2-351.

    Article  Google Scholar 

  31. Peters, J., Martinez, N., Michoud, G., Cario, A., Franzetti, B., Oger, P., et al. (2014). Deep sea microbes probed by incoherent neutron scattering under high hydrostatic pressure. Zeitschrift für Physikalische Chemie, 228, 1121–1133.

    Article  Google Scholar 

  32. Martinez, N., Michoud, G., Cario, A., Ollivier, J., Franzetti, B., Jebbar, M., et al. (2016). High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes. Scientific Reports, 6, 32816. https://doi.org/10.1038/srep32816.

    Article  Google Scholar 

  33. Bratbak, G. (1985). Bacterial biovolume and biomass estimations. Applied and Environment Microbiology, 49, 1488–1493.

    Google Scholar 

  34. Dellerue, S., & Bellissent-Funel, M. C. (2000). Relaxational dynamics of water molecules at protein surface. Chemical Physics, 258, 315–325.

    Article  Google Scholar 

  35. Schiro, G., Fichou, Y., Gallat, F. X., Wood, K., Gabel, F., Moulin, M., et al. (2015). Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nature Communications, 6, 6490. https://doi.org/10.1038/ncomms7490.

    Article  Google Scholar 

  36. Perticaroli, S., Ehlers, G., Stanley, C. B., Mamontov, E., O’Neill, H., Zhang, Q., et al. (2017). Description of hydration water in protein (green fluorescent protein) solution. Journal of the American Chemical Society, 139(3), 1098–1105. https://doi.org/10.1021/jacs.6b08845.

    Article  Google Scholar 

  37. Peters, J., Martinez, N., Trovaslet, M., Scannapieco, K., Koza, M. M., Masson, P., et al. (2016). Dynamics of human acetylcholinesterase bound to non-covalent and covalent inhibitors shedding light on changes to the water network structure. Physical Chemistry Chemical Physics: PCCP, 18(18), 12992–13001. https://doi.org/10.1039/c6cp00280c.

    Article  Google Scholar 

  38. Van Hove, L. (1954). Correlations in space and time and born approximation scattering in systems of interacting particles. Physical Review, 95(1), 249–262.

    Article  MathSciNet  Google Scholar 

  39. Natali, F., Dolce, C., Peters, J., Gerelli, Y., Stelletta, C., & Leduc, G. (2013). Water dynamics in neural tissue. Journal of the Physical Society of Japan, 82(Suppl. A), SA017.

    Article  Google Scholar 

  40. Volino, F., & Dianoux, A. J. (1980). Neutron incoherent-scattering law for diffusion in a potential of spherical-symmetry: General formalism and application to diffusion inside a sphere. Molecular Physics, 41(2), 271–279. https://doi.org/10.1080/00268978000102761.

    Article  Google Scholar 

  41. Martinko, M. T. M. J. M., & Parker, J. (2006). Brock’s biology of microorganism 11th. New Jersey: Prentice Hall.

    Google Scholar 

  42. Martinez, N., Natali, F., & Peters, J. (2015). mQfit, a new program for analyzing quasi-elastic neutron scattering data. EPJ Web of Conferences, 83(3010), 3011–3014.

    Google Scholar 

  43. Stadler, A. M., Embs, J. P., Digel, I., Artmann, G. M., Unruh, T., Buldt, G., et al. (2008). Cytoplasmic water and hydration layer dynamics in human red blood cells. Journal of the American Chemical Society, 130(50), 16852–16853. https://doi.org/10.1021/ja807691j.

    Article  Google Scholar 

  44. Jasnin, M., Stadler, A. M., Tehei, M., & Zaccai, G. (2010). Specific cellular water dynamics observed in vivo by neutron scattering and NMR. Physical Chemistry Chemical Physics: PCCP, 12, 10154–10160.

    Article  Google Scholar 

  45. Laggner, P., & Müller, K. (1978). The structure of serum lipoproteins as analysed by X-ray small-angle scattering. Quarterly Reviews of Biophysics, 11, 371–425.

    Article  Google Scholar 

  46. Krieger, M. (1998). The “best” of cholesterols, the “worst” of cholesterols: a tale of two receptors. Proceedings of the National Academy of Sciences of the United States of America, 95, 4077–4080.

    Article  Google Scholar 

  47. Muller, K., Laggner, P., Glatter, O., & Kostner, G. (1978). The structure of human-plasma low-density lipoprotein B. An X-ray small-angle scattering study. European Journal of Biochemistry, 82, 73–90.

    Article  Google Scholar 

  48. Maric, S., Lind, T. K., Lyngso, J., Cardenas, M., & Pedersen, J. S. (2017). Modeling small-angle X-ray scattering data for low-density lipoproteins: Insights into the fatty core packing and phase transition. ACS Nano, 11, 1080–1090.

    Article  Google Scholar 

  49. Orlova, E. V., Sherman, M. B., Chiu, W., Mowri, H., Smith, L. C., & Gotto, A. M. (1999). Three-dimensional structure of low density lipoproteins by electron cryomicroscopy. Proceedings of the National Academy of Sciences, 96, 8420–8425.

    Article  Google Scholar 

  50. Liu, Y., & Atkinson, D. (2011). Enhancing the contrast of ApoB to locate the surface components in the 3D density map of human LDL. Journal of Molecular Biology, 405, 274–283.

    Article  Google Scholar 

  51. Liu, Y. H., & Atkinson, D. (2011). Immuno-electron cryo-microscopy imaging reveals a looped topology of apoB at the surface of human LDL. Journal of Lipid Research, 52, 1111–1116.

    Article  Google Scholar 

  52. Vea, Kumar. (2011). Three-dimensional cryoEM reconstruction of native LDL particles to 16 angstrom resolution at physiological body temperature. PLoS ONE, 6, e18841.

    Article  Google Scholar 

  53. Prassl, R., & Laggner, P. (2009). Molecular structure of low density lipoprotein: Current status and future challenges. European Biophysics Journal, 38(2), 145–158. https://doi.org/10.1007/s00249-008-0368-y.

    Article  Google Scholar 

  54. Benjamin, E. J., et al. (2017). Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation, 135, e146–e603.

    Article  Google Scholar 

  55. Deckelbaum, R. J., Shipley, G. G., Small, D. M., Lees, R. S., & George, P. K. (1975). Thermal transitions in human plasma low density lipoproteins. Science, 190, 392–394.

    Article  Google Scholar 

  56. Wanderlingh, U., D’Angelo, G., Branca, C., Nibali, V. C., Trimarchi, A., Rifici, S., et al. (2014). Multi-component modeling of quasielastic neutron scattering from phospholipid membranes. J Chem Phys, 140(17), 174901. https://doi.org/10.1063/1.4872167.

    Article  Google Scholar 

  57. Golub, M., Lehofer, B., Martinez, N., Ollivier, J., Kohlbrecher, J., Prassl, R., et al. (2017). High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles. Scientific Reports, 7, 46034. https://doi.org/10.1038/srep46034.

    Article  Google Scholar 

  58. Peters, J., Golub, M., Demé, B., Gonthier, J., Payre, C., Maurice, J., Sadykov, R., Lelièvre-Berna, E. (2018) A new high pressure cell going up to 100 °C. Rev Sc Instr., To be submitted.

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Austrian Science Fund (FWF Project No. I 1109-N28 to R. P.) and by two projects financed by the Agence Nationale de la Recherche (ANR; project number ANR 2010 BLAN 1725 01 Living deep and project number ANR-12-ISV5-0002-01 LDLPRESS to J.P.). We thank the ILL for allocation of beamtime and the SANE group of ILL for their support to develop the HHP equipment and C. Payre and J. Maurice for their help to perform the experiments. The work is partially based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland. The work benefitted from SasView software, originally developed by the DANSE project under NSF award DMR-0520547. We are gratefully acknowledging the help of the local contacts on the various instruments, in particular B. Frick, M. M. Koza, J. Ollivier, J. Kohlbrecher and G. Nagy. We wish to thank our many co-workers for their help and fruitful discussions, in particular N. Martinez, G. Michoud, A. Cario, B. Franzetti, M. Jebbar, B. Lehofer and M. Golub.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peters, J., Prassl, R., Oger, P. (2018). Probing the Structure and Dynamics of Cells, Cell Components and Endogenous Nanoparticles Under Extreme Conditions with Neutrons. In: Artmann, G., Artmann, A., Zhubanova, A., Digel, I. (eds) Biological, Physical and Technical Basics of Cell Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7904-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7904-7_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7903-0

  • Online ISBN: 978-981-10-7904-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics