Skip to main content

Chemical Kinetic Simulation of Syngas-Fueled HCCI Engine

  • Chapter
  • First Online:
Advances in Internal Combustion Engine Research

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Energy safety concern and depletion of fossil fuel resources lead towards the investigation of an efficient and clean alternative combustion strategy as well as renewable biofuels. Homogeneous charge compression ignition (HCCI) engine has demonstrated the potential for higher thermal efficiency along with simultaneous reduction of NO x and PM emissions to ultra-low level. Syngas is a potential alternative fuel. Syngas-fueled HCCI engine combines the advantages of advanced combustion strategy and biofuels. This chapter provides the overview of HCCI combustion and its chemical kinetic simulation using stochastic reactor model (SRM). This chapter also presents the comparative analysis of performance of various syngas reaction mechanisms in the HCCI engine at different inlet temperature and equivalence ratio using stochastic reactor model. For validating the reaction mechanisms, experimental in-cylinder pressure data is compared with the numerically simulated data. Syngas reaction mechanism CRECK-2014 (consisting of 32 species and 173 reactions) is found suitable for syngas-fueled HCCI combustion simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maurya RK, Agarwal AK (2015) Experimental investigations of particulate size and number distribution in an ethanol and methanol fueled HCCI engine. J Energy Res Technol 137(1):012201

    Article  Google Scholar 

  2. Maurya RK, Agarwal AK (2014) Particulate morphology and toxicity of an alcohol fuelled HCCI engine. SAE Int J Fuels Lubr 7(2014-01-9076):323–336

    Google Scholar 

  3. Yao M, Zheng Z, Liu H (2009) Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Prog Energy Combust Sci 35(5):398–437

    Article  Google Scholar 

  4. Komninos NP, Rakopoulos CD (2012) Modeling HCCI combustion of biofuels: a review. Renew Sustain Energy Rev 16(3):1588–1610

    Article  Google Scholar 

  5. Maurya RK, Akhil N (2016) Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 1: development of a new reduced ethanol oxidation mechanism. Energy Convers Manag 118:44–54

    Article  Google Scholar 

  6. Maurya RK, Akhil N (2017) Development of a new reduced hydrogen combustion mechanism with NO x and parametric study of hydrogen HCCI combustion using stochastic reactor model. Energy Convers Manag 132:65–81

    Article  Google Scholar 

  7. Veetil JE, Rajith CV, Velamati RK (2016) Numerical simulations of steady perforated-plate stabilized Syngas air pre-mixed flames. Int J Hydrog Energy 41(31):13747–13757

    Article  Google Scholar 

  8. Bhaduri S, Berger B, Pochet M, Jeanmart H, Contino F (2017) HCCI engine operated with unscrubbed biomass syngas. Fuel Process Technol 157:52–58

    Article  Google Scholar 

  9. Healy D, Kalitan DM, Aul CJ, Petersen EL, Bourque G, Curran HJ (2010) Energy Fuel 24:1521–1528

    Article  Google Scholar 

  10. Kéromnès A, Metcalfe WK, Heufer KA, Donohoe N, Das AK, Sung C-J, Herzler J, Naumann C, Griebel P, Mathieu O, Krejci MC, Petersen EL, Pitz WJ, Curran HJ (2013) Combust Flame 160:995–1011

    Article  Google Scholar 

  11. Davis SG, Joshi AV, Wang H, Egolfopoulos F (2005) Proc Combust Inst 30:1283–1292

    Article  Google Scholar 

  12. Li X, You X, Wu F, Law CK (2015) Proc Combust Inst 35. https://doi.org/10.1016/j.proci.2014.07.047

  13. Wang H, You X, Joshi AV, Davis SG, Laskin A, Egolfopoulos F, Law CK. USC Mech version II. High-temperature combustion reaction model of H2/CO/C1–C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm/

  14. CRECK modeling group hydrogen/CO mechanism version 2014. http://creckmodeling.chem.polimi.it/kinetic.html/

  15. Starik AM, Titova NS, Sharipov AS, Kozlov VE (2010) Combust Explos Shock Waves 46:491–506

    Article  Google Scholar 

  16. Anders H, Christensen M, Johansson B, Franke A, Richter M, Aldén M (1999) A study of the homogeneous charge compression ignition combustion process by chemiluminescence imaging (No. 1999-01-3680). SAE Technical Paper

    Google Scholar 

  17. Maurya RK, Agarwal AK (2009) Experimental investigation of the effect of the intake air temperature and mixture quality on the combustion of a methanol-and gasoline-fuelled homogeneous charge compression ignition engine. Proc Inst Mech Eng Part D J Automob Eng 223(11):1445–1458

    Article  Google Scholar 

  18. Liu H, Zheng Z, Yao M, Zhang P, Zheng Z, He B, Qi Y (2012) Influence of temperature and mixture stratification on HCCI combustion using chemiluminescence images and CFD analysis. Appl Therm Eng 33:135–143

    Article  Google Scholar 

  19. Maurya RK (2018) Characteristics and control of low temperature combustion engines: employing gasoline, ethanol and methanol. Springer. ISBN 978-3-319-68507-6

    Google Scholar 

  20. Agarwal AK, Singh AP, Maurya RK (2017) Evolution, challenges and path forward for low temperature combustion engines. Prog Energy Combust Sci 61:1–56

    Article  Google Scholar 

  21. Yamasaki Y, Kaneko S (2014) Prediction of ignition and combustion development in an HCCI engine fueled by syngas (No. 2014-32-0002). SAE Technical Paper

    Google Scholar 

  22. Przybyla G, Szlek A, Haggith D, Sobiesiak A (2016) Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas. Energy 116:1464–1478

    Article  Google Scholar 

  23. Sahoo BB, Sahoo N, Saha UK (2012) Effect of H2:CO ratio in syngas on the performance of a dual fuel diesel engine operation. Appl Therm Eng 49:139–146

    Article  Google Scholar 

  24. Sahoo BB, Saha UK, Sahoo N (2011) Effect of load level on the performance of a dual fuel compression ignition engine operating on syngas fuels with varying H2/CO content. J Eng Gas Turbines Power 133(12):122802

    Article  Google Scholar 

  25. Boehman AL, Corre OL (2008) Combustion of syngas in internal combustion engines. Combust Sci Technol 180(6):1193–1206

    Article  Google Scholar 

  26. Martínez JD, Mahkamov K, Andrade RV, Lora EES (2012) Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renew Energy 38(1):1–9

    Article  Google Scholar 

  27. Bika AS (2010) Synthesis gas use in internal combustion engines, PhD thesis, University Of Minnesota, USA

    Google Scholar 

  28. CMCL innovations, kinetics & SRM Engine SuiteTM, version 8.5.0. (user manual). URL: http://www.cmclinnovations.com (17 Nov 2015)

  29. Bhave A, Balthasar M, Kraft M, Mauss F (2004) Analysis of a natural gas fuelled homogeneous charge compression ignition engine with exhaust gas recirculation using a stochastic reactor model. Int J Engine Res 5(1):93–104

    Article  Google Scholar 

  30. Bhave A, Kraft M (2004) Partially stirred reactor model: analytical solutions and numerical convergence study of a PDF/Monte Carlo method. SIAM J Sci Comput 25(1):1798–1823

    Article  MathSciNet  MATH  Google Scholar 

  31. Bernard G, Scaife M, Bhave A, Ooi D, Dizy J (2016) Application of the SRM engine suite over the entire load-speed operation of a US EPA Tier 4 capable IC engine (No. 2016-01-0571). SAE Technical Paper

    Google Scholar 

  32. Olm C, Zsély IG, Varga T, Curran HJ, Turányi T (2015) Comparison of the performance of several recent syngas combustion mechanisms. Combust Flame 162(5):1793–1812

    Article  Google Scholar 

  33. Varga T, Olm C, Nagy T, Zsély IG, Valkó É, Pálvölgyi R, Curran H, Turányi T (2016) Development of a joint hydrogen and syngas combustion mechanism based on an optimization approach. Int J Chem Kinet 48(8):407–422. https://doi.org/10.1002/kin.21006

  34. Maurya RK, Akhil N (2016) Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 2: parametric study of performance and emissions characteristics using new reduced ethanol oxidation mechanism. Energy Convers Manag 121:55–70

    Article  Google Scholar 

  35. Smith GP, Golden DM, Frenklach M, Moriary NW, Eiteneer B, Goldenberg M, Bowman CT, Hanson RK, Song S, Gardiner WC, Lissianski VV, Qin Z. GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/

  36. Zsély IG, Zádor J, Turányi T (2005) Proc Combust Inst 30:1273–1281

    Article  Google Scholar 

  37. Singh G (2010) Overview of the DOE advanced combustion engine R&D. DOE hydrogen program and vehicle technologies program, annual merit review, Washington, DC

    Google Scholar 

  38. Ahmed SS, Mauß F, Moréac G, Zeuch T (2007) Phys Chem Chem Phys 9:1107–1126

    Article  Google Scholar 

  39. Rasmussen CL, Hansen J, Marshall P, Glarborg P (2008) Int J Chem Kinet 40:454–480

    Article  Google Scholar 

  40. Sun H, Yang SI, Jomaas G, Law CK (2007) Proc Combust Inst 31:439–446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Maurya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, R.K., Saxena, M.R., Rathore, A., Yadav, R. (2018). Chemical Kinetic Simulation of Syngas-Fueled HCCI Engine. In: Srivastava, D., Agarwal, A., Datta, A., Maurya, R. (eds) Advances in Internal Combustion Engine Research. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7575-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7575-9_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7574-2

  • Online ISBN: 978-981-10-7575-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics