Skip to main content

Calpain Activity and Expression in Human Colonic Tumors

  • Chapter
  • First Online:
Pathophysiological Aspects of Proteases

Abstract

Families of cysteine proteases which are activated by Ca2+ are known as calpains. These enzymes can contribute to the metastatic behavior of certain tumors. In particular, we have found from Western Blotting and immunohistochemistry that the activity and expression of m-calpain is higher in colorectal tumors than non-malignant colonic mucosa. Furthermore, the expression of calpastin and high molecular weight calmodulin-binding protein, which are inhibitors of calpains, is reduced in colon cancers. These findings are of great importance in the design and development of anticancer drugs as well as providing diagnostic value as an indicator of the development of colorectal cancer. This chapter is devoted principally to the discoveries in our laboratories of calpain and its inhibitors in relation to human colonic neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Stewart B, Wild C (2014) World cancer report 2014. International agency for research on cancer (WHO Press)

    Google Scholar 

  2. Storr SJ, Carragher NO, Frame MC, Parr T, Martin SG (2011) The calpain system and cancer. Nat Rev Cancer 11:364–374

    Article  CAS  Google Scholar 

  3. Lelou L, Wells A (2011) Calpains as potential anti-cancer targets. Expert Opin Ther Targets 15:309–323

    Article  Google Scholar 

  4. Goll DE, Thompson VF, Li H, Wei W, Cong J (2002) The calpain system. Physiol Rev 83:731–801

    Article  Google Scholar 

  5. Parameswaran S, Kumar S, Sharma RK (2013) Role of calpains in calmodulin regulated system. In: Chakraborty S, Dhalla NS (eds) Proteases in health and disease. Springer Publisher, pp 33–48

    Chapter  Google Scholar 

  6. Cong J, Thompson V, Goll D (2002) Immunoaffinity purification of the calpains. Protein Expr Purify 25:283–290

    Article  CAS  Google Scholar 

  7. Sorimachi H, Hata S, Ono Y (2011) Calpain chronicle-an enzyme family under multidisciplinary characterization. Proc Jpn Acad Ser B Phys Biol Sci 87:287–327

    Article  CAS  Google Scholar 

  8. Ono Y, Sorimachi H, Suzuki K (1998) Structure and physiology of calpain, an enigmatic protease. Biochem Biophys Res Commun 245:289–294

    Article  CAS  Google Scholar 

  9. Maki M, Ma H, Takano E, Adachi Y, Lee WJ, Hatanaka M, Murachi T (1991) Calpastatins: biochemical and molecular biological studies. Biomed Biochim Acta 50:509–516

    CAS  PubMed  Google Scholar 

  10. Carragher NO (2006) Calpain inhibition: a therapeutic strategy targeting multiple disease states. Curr Pharm Des 12:615–638

    Article  CAS  Google Scholar 

  11. Sharma RK (1990) Purification and characterization of novel calmodulin-binding protein from cardiac muscle. J Biol Chem 265:1152–1157

    CAS  PubMed  Google Scholar 

  12. Kakkar R, Raju RV, Mellgren RL, Radhi J, Sharma RK (1997) Cardiac high molecular weight calmodulin binding protein contains calpastatin activity. Biochemistry 36:11550–11555

    Article  CAS  Google Scholar 

  13. Carragher NO, Frame MC (2002) Calpain: a role in cell transformation and migration. Int J Biochem Cell Biol 34:1539–1543

    Article  CAS  Google Scholar 

  14. Huttenlocher A, Palecek SP, Lu Q, Zhang W, Mellgren RL, Lauffenburger DA, Ginsberg MH, Horwitz AF (1997) Regulation of cell migration by the calcium-dependent protease calpain. J Biol Chem 272:32719–32722

    Article  CAS  Google Scholar 

  15. Patel YM, Lane MD (2000) Mitotic clonal expansion during pre-adipocyte differentiation: calpain-mediated turnover of p27. J Biol Chem 275:17653–17660

    Article  CAS  Google Scholar 

  16. Parameswaran S, Sharma RK (2014) Altered expression of calcineurin, calpain, calpastatin and HMWCaMBP in cardiac cells following ischemia and reperfusion. Biochem Biophys Res Commun 443:604–609

    Article  CAS  Google Scholar 

  17. Parameswaran S, Sharma RK (2014) Ischemia and reperfusion induce differential expression of calpastatin and its homologue high molecular weight calmodulin-binding protein in murine cardiomyocytes. PLoS ONE 9:e114653

    Article  Google Scholar 

  18. Lakshmikuttyamma A, Selvakumar P, Kakkar R, Kanthan R, Wang R, Sharma RK (2003) Activation of calcineurin expression in ischemia-reperfused rat heart and in human ischemic myocardium. J Cell Biochem 90:987–997

    Article  CAS  Google Scholar 

  19. Lakshmikuttyamma A, Selvakumar P, Ratan Sharma A, Anderson DH, Sharma RK (2004) In vitro proteolytic degradation of bovine brain calcineurin by m-calpain. Neurochem Res 29:1913–1921

    Article  CAS  Google Scholar 

  20. Lakshmikuttyamma A, Selvakumar P, Charavaryamath C, Singh B, Tuchek J, Sharma RK (2006) Expression of calcineurin and its interacting proteins in epileptic fowl. J Neurochem 96:366–373

    Article  CAS  Google Scholar 

  21. Lakshmikuttyamma A, Selvakumar P, Tuchek J, Sharma RK (2008) Myristoyltransferase and calcineurin: novel molecular therapeutic target for epilepsy. Prog Neurobiol 84:77–84

    Article  CAS  Google Scholar 

  22. Selvakumar P, Lakshmikuttyamma A, Charavaryamath C, Singh B, Tuchek J, Sharma RK (2005) Expression of myristoyltransferase and its interacting proteins in epilepsy. Biochem Biophys Res Commun 335:1132–1139

    Article  CAS  Google Scholar 

  23. Kishimoto A, Kajikawa N, Shiota M, Nishizuka Y (1983) Preoteolytic activation of calcium-activated, phospholipid-dependent protein kinase by calcium-dependent neutral protease. J Biol Chem 258:1156–1164

    CAS  PubMed  Google Scholar 

  24. Oda A, Druker BJ, Ariyoshi H, Smith M, Salzman EW (1993) pp60src is an endogenous substrate for calpain in human blood platelets. J Biol Chem 268:12603–12608

    CAS  PubMed  Google Scholar 

  25. Frangioni JV, Oda A, Smith M, Salzman EW, Neel BG (1993) Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B PTB-1B in human platelets. EMBO J 12:4843–4856

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Braun C, Engel M, Seifert M, Theisinger B, Seitz G, Zang KD, Welter C (1999) Expression of calpain I messenger RNA in human renal cell carcinoma: correlation with lymph node metastasis and histological type. Int J Cancer 84:6–9

    Article  CAS  Google Scholar 

  27. Mamoune A, Luo JH, Lauffenburger DA, Wells A (2003) Calpain-2 is a target for limiting prostate cancer invasion. Cancer Res 63:4632–4640

    CAS  Google Scholar 

  28. Yoshikawa Y, Mukai H, Hino F, Asada K, Kato I (2000) Isolation of two novel genes, down-regulated in gastric cancer. Cancer Sci 91:459–463

    CAS  Google Scholar 

  29. Liu K, Li L, Cohen SN (2000) Antisense RNA-mediated deficiency of the calpain protease, nCL-4, in NH3T3cells is associated with neoplastic transformation and tumorigenesis. J Biol Chem 275:31093–31098

    Article  CAS  Google Scholar 

  30. Witkowski JM, Zmuda-Trzebiatowska E, Swiercz JM, Cichorek M, Ciepluch H, Lewandowski K, Bryl E, Hellmann A (2002) Modulation of the activity of calcium-activated neutral proteases calpains in chronic lymphocytic leukemia B-CLL cells. Blood 100:1802–1809

    Article  CAS  Google Scholar 

  31. Carillo S, Pariat M, Steff AM, Roux P, Etienne-Julan M, Lorca T, Piechaczyk M (1994) Differential sensitivity of FOS and JUN family members to calpains. Oncogene 9:1679–1689

    CAS  PubMed  Google Scholar 

  32. Kubbutat M, Vousden KH (1997) Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol Cell Biol 17:460–468

    Article  CAS  Google Scholar 

  33. Carragher NO, Fincham VJ, Riley D, Frame MC (2001) Cleavage of focal adhesion kinase by different proteases during SRC-regulated transformation and apoptosis. Distinct roles for calpain and caspases. J Biol Chem 276:4270–4275

    Article  CAS  Google Scholar 

  34. Johnson D, Frame MC, Wyke JA (1998) Expression of the v-Src oncoprotein in fibroblasts disrupts normal regulation of the CDK inhibitor p 27 and inhibits quiescence. Oncogene 16:2017–2028

    Article  CAS  Google Scholar 

  35. Kellie S (1988) Cellular transformation, tyrosine kinase oncogenes and the cellular adhesion plaque. BioEssays 8:25–30

    Article  CAS  Google Scholar 

  36. Carragher NO, Westhoff MA, Riley D, Potter DA, Dutt P, Elce JS, Greer PA, Frame MC (2002) v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation. Mol Cell Biol 22:257–269

    Article  CAS  Google Scholar 

  37. Bolen JB, Veillette A, Schwartz AM, DeSeau V, Rosen N (1987) Activation of pp60c-src protein kinase activity in human colon carcinoma. Proc Natl Acad Sci USA 84:2251–2255

    Article  CAS  Google Scholar 

  38. Ottenhoff-Kalff AE, Rijksen G, Van Beurden EA, Hennipman A, Michels AA, Staal GE (1992) Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product. Cancer Res 52:4773–4778

    CAS  PubMed  Google Scholar 

  39. Selvakumar P, Smith-Windsor E, Bonham K, Sharma RK (2006) N-myristoyl- transferase 2 expression in human colon cancer: cross-talk between the calpain and caspase system. FEBS Lett 580:2021–2026

    Article  CAS  Google Scholar 

  40. Sharma RK, Kumar S, Parameswaran S, Dimmock JR (2014) Regulation of N myristoyltransferase by the calpain and caspase systems. Indian J Biochem Biophys 51:506–511

    PubMed  Google Scholar 

  41. Raju RV, Kakkar R, Datla RS, Radhi J, Sharma RK (1998) Myristoyl-coA: protein N-myristoyltransferase from bovine cardiac muscle: molecular cloning, kinetic analysis and in vitro proteolytic cleavage by m-calpain. Exp Cell Res 241:23–35

    Article  CAS  Google Scholar 

  42. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  Google Scholar 

  43. Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983

    Article  CAS  Google Scholar 

  44. Gonen H, Shkedy D, Barnoy S, Kosower NS, Ciechanover A (1997) On the involvement of calpains in the degradation of the tumor suppressor protein p53. FEBS Lett 406:17–22

    Article  CAS  Google Scholar 

  45. Toyota H, Yanase N, Yoshimoto T, Moriyama M, Sudo T, Mizuguchi J (2003) Calpain-induced Bax-cleavage product is a more potent inducer of apoptotic cell death than wild-type Bax. Cancer Lett 189:221–230

    Article  CAS  Google Scholar 

  46. Blomgren K, Zhu C, Wang X, Karlsson JO, Leverin AL, Bahr BA, Mallard C, Hagberg H (2001) Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of ‘pathological apoptosis’? J Biol Chem 276:10191–10198

    Article  CAS  Google Scholar 

  47. Ruiz-Vela A, de Buitrago GG, Martínez-A C (1999) Implication of calpain in caspase activation during B cell clonal deletion. EMBO J 18:4988–4998

    Article  CAS  Google Scholar 

  48. Chen T, Yang I, Irby R, Shain KH, Wang HG, Quackenbush J, Coppola D, Cheng JQ, Yeatman TJ (2003) Regulation of caspase expression and apoptosis by adenomatous polyposis coli. Cancer Res 63:4368–4374

    CAS  PubMed  Google Scholar 

  49. Zhu DM, Uckun FM (2000) Calpain inhibitor II induces caspase-dependent apoptosis in human acute lymphoblastic leukemia and non-Hodgkin’s lymphoma cells as well as some solid tumor cells. Clin Cancer Res 6:2456–2463

    CAS  PubMed  Google Scholar 

  50. Lakshmikuttyamma A, Selvakumar P, Kanthan R, Kanthan SC, Sharma RK (2004) Overexpression of m-calpain in human colorectal adenocarcinomas. Cancer Epidemiol Biomarkers Prev 13:1604–1609

    CAS  PubMed  Google Scholar 

  51. Murachi T (1989) Intracellular regulatory system involving calpain and calpastatin. Biochem Int 18:263–294

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Canadian Institutes of Health Research, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R.K., Das, U., Parameswaran, S., Kumar, S., Dimmock, J.R. (2017). Calpain Activity and Expression in Human Colonic Tumors. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_7

Download citation

Publish with us

Policies and ethics