Skip to main content

Antihypertensive Role of Kidney: Focus on Tissue Kallikreins

  • Chapter
  • First Online:
Pathophysiological Aspects of Proteases

Abstract

Regulation of blood pressure (BP) depends mostly on genetic and environmental factors. Among different physiological mechanisms responsible for a discernible increase in BP (hypertension), two major mechanisms are important: (a) matrix remodeling associated with arterial wall thickening with apparent reduction in blood flow and (b) activation of renin–angiotensin system (RAS). To counteract the BP rise beyond physiological limit and to ameliorate BP-rise-associated complications, nature has designed an important endogenous regulatory mechanism operative especially in kidney, the kallikrein–kinin system (KKS). In cortical collecting duct of the kidney, KKS plays a significant role in BP regulation under salt excess condition. This protective phenomenon potentially acts as a hypotensive mechanism to regulate abnormal BP increase. The functional components of the KKS are the kallikrein, a serine protease, and kinin. Proteolytic action of kallikrein on precursor kininogen forms vasoactive peptide kinin by enzymatic cleavage. Upon release, kinin binds to the B2 receptor on cell surface and exerts antihypertensive effect. Though KKS operates in both cardiovascular and renal systems, for the sake of simplicity and to have a focused but detailed understanding, only the regulatory mechanisms of renal KKS on BP homeostasis has been considered for discussion in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Majid DSA, Prieto MC, Gabriel Navar L (2015) Salt-sensitive hypertension: perspectives on intrarenal mechanisms. Curr Hypertens Rev 11:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tatarkina ND, Avdeeva EV, Orlovskaia TG et al (1991) Central, pulmonary and hepatic hemodynamics at the developmental stages of cardiopulmonary insufficiency. Sov Med 4:5–8

    Google Scholar 

  3. Traber DL, Flynn JT, Herndon DN et al (1989) Comparison of the cardiopulmonary responses to single bolus and continuous infusion of endotoxin in an ovine model. Circ Shock 27:123–138

    CAS  PubMed  Google Scholar 

  4. Godsoe A, Kimura R, Herndon DN et al (1988) Cardiopulmonary changes with intermittent endotoxin administration in sheep. Circ Shock 25:61–74

    CAS  PubMed  Google Scholar 

  5. Ferri C, Bellini C, Carlomagno A et al (1996) Active kallikrein response to changes in sodium-chloride intake in essential hypertensive patients. J Am Soc Nephrol 7:443–453

    CAS  PubMed  Google Scholar 

  6. Ferri C, Bellini C, Carlomagno A et al (1994) Urinary kallikrein and salt sensitivity in essential hypertensive males. Kidney Int 46:780–788

    Article  CAS  PubMed  Google Scholar 

  7. d’Ortho M-P (2008) MMPs, inflammation and pulmonary arterial hypertension. In: Lagente V, Boichot E (eds) Matrix metalloproteinases in tissue remodelling and inflammation. Birkhäuser Verlag, Basel/Switzerland, pp 81–97

    Chapter  Google Scholar 

  8. Yarovaya GA, Neshkova EA (2015) Kallikrein-kinin system. Long history and present. (to 90th anniversary of discovery of the system). Bioorg Khim 41:275–291

    CAS  PubMed  Google Scholar 

  9. Kerbiriou DM, Griffin JH (1979) Human high molecular weight kininogen. Studies of structure-function relationships and of proteolysis of the molecule occurring during contact activation of plasma. J Biol Chem 254:12020–12027

    CAS  PubMed  Google Scholar 

  10. Gustafson EJ, Schmaier AH, Wachtfogel YT et al (1989) Human neutrophils contain and bind high molecular weight kininogen. J Clin Invest 84:28–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gustafson EJ, Schutsky D, Knight LC et al (1986) High molecular weight kininogen binds to unstimulated platelets. J Clin Invest 78:310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmaier AH, Kuo A, Lundberg D et al (1988) The expression of high molecular weight kininogen on human umbilical vein endothelial cells. J Biol Chem 263:16327–16333

    CAS  PubMed  Google Scholar 

  13. Shariat-Madar Z, Mahdi F, Schmaier AH (2002) Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem 277:17962–17969

    Article  CAS  PubMed  Google Scholar 

  14. Joseph K, Tholanikunnel BG, Kaplan AP (2002) Heat shock protein 90 catalyzes activation of the prekallikrein-kininogen complex in the absence of factor XII. Proc Natl Acad Sci 99:896–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Røjkjær R, Schmaier AH (1999) Activation of the plasma kallikrein/kinin system on endothelial cells. Proc Assoc Am Phys 111:220–227

    Article  PubMed  Google Scholar 

  16. Picard N, Eladari D, El Moghrabi S et al (2008) Defective ENaC processing and function in tissue kallikrein-deficient mice. J Biol Chem 283:4602–4611

    Article  CAS  PubMed  Google Scholar 

  17. Kaplan AP, Austen KF (1971) A prealbumin activator of prekallikrein: II. Derivation of activators of prekallikrein from active Hageman factor by digestion with plasmin. J Exp Med 133:696–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaplan AP, Joseph K, Shibayama Y et al (2001) Activation of the plasma kinin forming cascade along cell surfaces. Int Arch Allerg Immunol 124:339–342

    Article  CAS  Google Scholar 

  19. Motta G, Shariat-Madar Z, Mahdi F et al (2001) Assembly of high molecular weight kininogen and activation of prekallikrein on cell matrix. Thromb Haemost 86:840–847

    Article  CAS  PubMed  Google Scholar 

  20. Fink E, Bhoola KD, Snyman C et al (2007) Cellular expression of plasma prekallikrein in human tissues. Biol Chem 388:957–963

    Article  CAS  PubMed  Google Scholar 

  21. Bianchi G, Ferrari P, Cusi D et al (1986) Cell membrane abnormalities and genetic hypertension. J Clin Hypertens 2:114–119

    CAS  PubMed  Google Scholar 

  22. Bianchi G, Ferrari P, Salvati P et al (1986) A renal abnormality in the Milan hypertensive strain of rats and in humans predisposed to essential hypertension. J Hypertens Suppl 4:S33–S36

    CAS  PubMed  Google Scholar 

  23. Marcondes S, Antunes E (2005) The plasma and tissue kininogen-kallikrein-kinin system: Role in the cardiovascular system. Curr Med Chem Cardiovasc Hematol Agents 3:33–44

    Article  CAS  PubMed  Google Scholar 

  24. Bhoola KD, Morley J, Schachter M et al (1965) Vasodilatation in the submaxillary gland of the cat. J Physiol 179:172–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Christiansen SC, Proud D, Cochrane CG (1987) Detection of tissue kallikrein in the bronchoalveolar lavage fluid of asthmatic subjects. J Clin Invest 79:188–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krantz S, Lober M, Fiedler H (1970) Isoelectric focusing of fibrinogens on polyacrylamide gels. FEBS Lett 11:100–102

    Article  CAS  PubMed  Google Scholar 

  27. Nustad K, Vaaje K, Pierce JV (1975) Synthesis of kallikreins by rat kidney slices. Br J Pharmacol 53:229–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma JN, Zeitlin IJ, Deodhar SD, Buchanan WW (1983) Detection of kallikrein-like activity in inflamed synovial tissue. Arch Int Pharmacodyn Ther 262:279–286

    CAS  PubMed  Google Scholar 

  29. Zeitlin IJ (1972) Rat intestinal kallikrein. In: Back N, Sicuteri F (eds) Vasopeptides: chemistry, pharmacology, and pathophysiology. Springer, Boston, pp 289–296

    Chapter  Google Scholar 

  30. Waeckel L, Potier L, Chollet C et al (2012) Antihypertensive role of tissue kallikrein in hyperaldosteronism in the mouse. Endocrinology 153:3886–3896

    Article  CAS  PubMed  Google Scholar 

  31. Nolly H, Scicli AG, Scicli G, Carretero OA (1985) Characterization of a kininogenase from rat vascular tissue resembling tissue kallikrein. Circ Res 56:816–821

    Article  CAS  PubMed  Google Scholar 

  32. Oza NB, Schwartz JH, Goud HD (1990) Rat aortic smooth muscle cells in culture express kallikrein, kininogen, and bradykininase activity. J Clin Invest 85:597–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fiedler F (1979) Enzymology of Glandular Kallikreins. In: Erdös EG (ed) Bradykinin, kallidin and kallikrein: Supplement. Springer, Berlin, pp 103–161

    Chapter  Google Scholar 

  34. Saed GM, Carretero OA, MacDonald RJ et al (1990) Kallikrein messenger RNA in rat arteries and veins. Circ Res 67:510–516

    Article  CAS  PubMed  Google Scholar 

  35. Graf K, Gräfe M, Auch-Schwelk W et al (1994) Tissue kallikrein activity and kinin release in human endothelial cells. Eur J Clin Chem Clin Biochem 32:495–500

    CAS  PubMed  Google Scholar 

  36. Wolf WC, Harley RA, Sluce D et al (1999) Localization and expression of tissue kallikrein and kallistatin in human blood vessels. J Histochem Cytochem 47:221–228

    Article  CAS  PubMed  Google Scholar 

  37. Dedio J, Wiemer G, Rütten H et al (2001) Tissue kallikrein KLK1 is expressed de novo in endothelial cells and mediates relaxation of human umbilical veins. Biol Chem 382:1483–1490

    Article  CAS  PubMed  Google Scholar 

  38. Figueroa CD, MacIver AG, Mackenzie JC et al (1988) Localisation of immunoreactive kininogen and tissue kallikrein in the human nephron. Histochem 89:437–442

    Article  CAS  Google Scholar 

  39. Bhoola KD, Figueroa CD, Worthy K (1992) Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 44:1–80

    CAS  PubMed  Google Scholar 

  40. Komiya M, Kato H, Suzuki T (1974) Bovine plasma kininogens: III. Structural comparison of high molecular weight and low molecular weight kininogens. J Biochem 76:833–845

    CAS  PubMed  Google Scholar 

  41. Sharma JN, Buchanan WW (1979) Kinin system in clinical and experimental rheumatoid inflammation: a short review. Curr Med Res Opin 6:314–321

    Article  CAS  PubMed  Google Scholar 

  42. Waeckel L, Potier L, Richer C et al (2013) Pathophysiology of genetic deficiency in tissue kallikrein activity in mouse and man. Thromb Haemost 110:476–483

    Article  CAS  PubMed  Google Scholar 

  43. Mombouli JV, Bissiriou I, Agboton V et al (1996) Endothelium-derived hyperpolarizing factor: a key mediator of the vasodilator action of bradykinin. Immunopharmacology 33:46–50

    Article  CAS  PubMed  Google Scholar 

  44. Mombouli JV, Vanhoutte PM (1995) Endothelium-derived hyperpolarizing factor(s) and the potentiation of kinins by converting enzyme inhibitors. Am J Hypertens 8:19S–27S

    Article  CAS  PubMed  Google Scholar 

  45. Rhaleb N-E, Yang X-P, Carretero OA (2011) The kallikrein-kinin system as a regulator of cardiovascular and renal function. Comp Physiol 1:971–993

    Google Scholar 

  46. Mombouli JV (1997) ACE inhibition, endothelial function and coronary artery lesions. Role of kinins and nitric oxide. Drugs 54:12–22

    Article  CAS  PubMed  Google Scholar 

  47. Kaplan AP (2014) Bradykinin-mediated diseases. Chem Immunol Allergy 100:140–147

    Article  PubMed  Google Scholar 

  48. Billings FT, Balaguer JM, Yu C et al (2012) Comparative effects of angiotensin receptor blockade and ACE Inhibition on the fibrinolytic and inflammatory responses to cardiopulmonary bypass. Clin Pharmacol Therap 91:1065–1073

    Article  CAS  Google Scholar 

  49. Mamenko M, Zaika O, Boukelmoune N et al (2015) Control of ENaC-mediated sodium reabsorption in the distal nephron by bradykinin. Vitam Horm 98:137–154

    Article  CAS  PubMed  Google Scholar 

  50. Mamenko M, Zaika O, Pochynyuk O (2014) Direct regulation of ENaC by bradykinin in the distal nephron. Implications for renal sodium handling. Curr Opin Nephrol Hypertens 23:122–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sabatini RA, Guimarães PB, Fernandes L et al (2008) ACE activity is modulated by kinin B2 receptor. Hypertension 51:689–695

    Article  CAS  PubMed  Google Scholar 

  52. Yang HYT, Erdos EG (1967) Second kininase in human blood plasma. Nature 215:1402–1403

    Article  CAS  PubMed  Google Scholar 

  53. Erdos EG, Sloane EM (1962) An enzyme in human blood plasma that inactivates bradykinin and kallidins. Biochem Pharmacol 11:585–592

    Article  CAS  PubMed  Google Scholar 

  54. Ertl G, Kloner RA, Alexander RW et al (1982) Limitation of experimental infarct size by an angiotensin-converting enzyme inhibitor. Circulation 65:40–48

    Article  CAS  PubMed  Google Scholar 

  55. Garg R, Yusuf S, Bussmann WD et al (1995) Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. J Am Med Assoc 273:1450–1456

    Article  CAS  Google Scholar 

  56. Hock CE, Ribeiro LGT, Lefer AM (1985) Preservation of ischemic myocardium by a new converting enzyme inhibitor, enalaprilic acid, in acute myocardial infarction. Am Heart J 109:222–228

    Article  CAS  PubMed  Google Scholar 

  57. Linz W, Schölkens BA, Han YF (1986) Beneficial effects of the converting enzyme inhibitor, ramipril, in ischemic rat hearts. J Cardiovasc Pharmacol 8:S91–S99

    Article  CAS  PubMed  Google Scholar 

  58. Schmieder RE, Martus P, Klingbeil A (1996) Reversal of left ventricular hypertrophy in essential hypertension: A meta-analysis of randomized double-blind studies. J Am Med Assoc 275:1507–1513

    Article  CAS  Google Scholar 

  59. Kakoki M, Smithies O (2009) The kallikrein-kinin system in health and in diseases of the kidney. Kidney Int 75:1019–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reddigari SR, Shibayama Y, Brunnée T et al (1993) Human Hageman factor (factor XII) and high molecular weight kininogen compete for the same binding site on human umbilical vein endothelial cells. J Biol Chem 268:11982–11987

    CAS  PubMed  Google Scholar 

  61. Gurewich V, Johnstone M, Loza J-P et al (1993) Pro-urokinase and prekallikrein are both associated with platelets. FEBS Lett 318:317–321

    Article  CAS  PubMed  Google Scholar 

  62. Lenich C, Pannell R, Gurewich V (1995) Assembly and activation of the intrinsic fibrinolytic pathway on the surface of human endothelial cells in culture. Thromb Haemost 74:698–703

    Article  CAS  PubMed  Google Scholar 

  63. Loza JP, Gurewich V, Johnstone M et al (1994) Platelet-bound prekallikrein promotes pro-urokinase-induced clot lysis: a mechanism for targeting the factor XII dependent intrinsic pathway of fibrinolysis. Thromb Haemost 71:347–352

    Article  CAS  PubMed  Google Scholar 

  64. Motta G, Rojkjaer R, Hasan AAK et al (1998) High molecular weight kininogen regulates prekallikrein assembly and activation on endothelial cells: a novel mechanism for contact activation. Blood 91:516–528

    CAS  PubMed  Google Scholar 

  65. Røjkjær R, Hasan AAK, Motta G et al (1998) Factor XII does not initiate prekallikrein activation on endothelial cells. Thromb Haemost 80:74–81

    Article  PubMed  Google Scholar 

  66. Chambrey R, Picard N (2011) Role of tissue kallikrein in regulation of tubule function. Curr Opin Nephrol Hypertens 20:523–528

    Article  CAS  PubMed  Google Scholar 

  67. Olsen UB (1978) Kidney volume expansion and prostaglandin release by bradykinin. The effect of indomethacin pretreatment. Acta Physiol Scand 102:129–136

    Article  CAS  PubMed  Google Scholar 

  68. Wilson TW (1992) Renal prostaglandin synthesis and angiotensin-converting enzyme inhibition. J Cardiovasc Pharmacol 19:S39–S44

    Article  CAS  PubMed  Google Scholar 

  69. Tomita K, Pisano JJ, Burg MB et al (1986) Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway. J Clinl Invest 77:136–141

    Article  CAS  Google Scholar 

  70. Tomita K, Pisano JJ, Knepper MA (1985) Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J Clin Invest 76:132–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Charbonneau H, Buléon M, Minville V et al (2016) Acute bradykinin receptor blockade during hemorrhagic shock in mice prevents the worsening hypotensive effect of angiotensin-converting enzyme inhibitor. Crit Care Med [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  72. Bergaya S, Meneton P, Bloch-Faure M et al (2001) Decreased flow-dependent dilation in carotid arteries of tissue kallikrein-knockout mice. Circ Res 88:593–599

    Article  CAS  PubMed  Google Scholar 

  73. Meneton P, Bloch-Faure M, Hagege AA et al (2001) Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice. Proc Natl Acad Sci 98:2634–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Duka I, Shenouda S, Johns C et al (2001) Role of the B2 receptor of bradykinin in insulin sensitivity. Hypertension 38:1355–1360

    Article  CAS  PubMed  Google Scholar 

  75. Duka I, Kintsurashvili E, Gavras I et al (2001) Vasoactive potential of the B1 bradykinin receptor in normotension and hypertension. Circ Res 88:275–281

    Article  CAS  PubMed  Google Scholar 

  76. Kohlman O, de Assis Rocha Neves F, Ginoza M et al (1995) Role of bradykinin in insulin sensitivity and blood pressure regulation during hyperinsulinemia. Hypertension 25:1003–1007

    Article  CAS  PubMed  Google Scholar 

  77. Obiezu CV, Diamandis EP (2005) Human tissue kallikrein gene family: applications in cancer. Cancer Lett 224:1–22

    Article  CAS  PubMed  Google Scholar 

  78. George MY, Eleftherios PD (2001) The new human tissue kallikrein gene family: Structure, function, and association to disease. Endocr Rev 22:184–204

    Google Scholar 

  79. Emami N, Diamandis EP (2007) Human tissue kallikreins: a road under construction. Clin Chim Acta 381:78–84

    Article  CAS  PubMed  Google Scholar 

  80. Slim R, Torremocha F, Moreau T et al (2002) Loss-of-function polymorphism of the human kallikrein gene with reduced urinary kallikrein activity. J Am Soc Nephrol 13:968–976

    CAS  PubMed  Google Scholar 

  81. Azizi M, Emanueli C, Peyrard S et al (2008) Genetic and dietary control of plasma tissue kallikrein secretion and urinary kinins exretion in man. J Hypertens 26:714–720

    Article  CAS  PubMed  Google Scholar 

  82. Potier L, Waeckel L, Richer C et al (2013) Tissue kallikrein, blood pressure regulation, and hypertension: insight from genetic kallikrein deficiency. Biol Chem 394:329–333

    Article  CAS  PubMed  Google Scholar 

  83. Adetuyibi A, Mills IH (1972) Relation between urinary kallikrein and renal function, hypertension, and excretion of sodium and water in man. Lancet 2:203–207

    Article  CAS  PubMed  Google Scholar 

  84. Croxatto HR, Martin MS (1970) Kallikrein-like activity in the urine of renal hypertensive rats. Experientia 26:1216–1217. doi:10.1007/bf01897974

    Article  CAS  PubMed  Google Scholar 

  85. Lechi A, Covi G, Lechi C et al (1978) Urinary kallikrein excretion and plasma renin activity in patients with essential hypertension and primary aldosteronism. Clin Sci Mol Med 55:51–55

    CAS  PubMed  Google Scholar 

  86. Margolius H, Pisano J, Geller R et al (1971) Altered urinary kallekrein excretion in human hypertension. Lancet 298:1063–1065

    Article  Google Scholar 

  87. Sharma JN, Narayanan P (2014) The kallikrein-kinin pathways in hypertension and diabetes. Prog Drug Res 69:15–36

    PubMed  Google Scholar 

  88. Frey EK (1926) Zusammenhänge zwischen Herzarbeit und Nierentätigkeit. Arch Klin Chir 142:663–669

    Google Scholar 

  89. De Freitas FM, Faraco EZ, De Azevedo DF (1964) General circulatory alterations induced by intravenous infusion of synthetic bradykinin in man. Circulation 29:66–70

    Article  Google Scholar 

  90. Mills IH (1982) The renal kallikrein-kinin system and sodium excretion. Q J Exp Physiol 67:393–399

    Article  CAS  PubMed  Google Scholar 

  91. Nasjletti A, McGiff JC, Colina-Chourio J (1978) Interrelations of the renal kallikrein-kinin system and renal prostaglandins in the conscious rat influence of mineralocorticoids. Circ Res 43:799–807

    Article  CAS  PubMed  Google Scholar 

  92. Willis LR, Ludens JH, Hook JB, Williamson HE (1969) Mechanism of natriuretic action of bradykinin. Am J Physiol 217:1–5

    CAS  PubMed  Google Scholar 

  93. Bergaya S, Hilgers RHP, Meneton P et al (2004) Flow-dependent dilation mediated by endogenous kinins requires angiotensin AT2 receptors. Circ Res 94:1623–1629

    Article  CAS  PubMed  Google Scholar 

  94. Trabold F, Pons S, Hagege AA et al (2002) Cardiovascular phenotypes of kinin B2 Receptor- and tissue kallikrein-deficient mice. Hypertension 40:90–95

    Article  CAS  PubMed  Google Scholar 

  95. Carretero OA, Carbini LA, Scicli AG (1993) The molecular biology of the kallikrein-kinin system: I. General description, nomenclature and the mouse gene family. J Hypertens 11:693–697

    Article  CAS  PubMed  Google Scholar 

  96. Carretero OA, Scicli AG (1978) The renal kallikrein-kinin system in human and in experimental hypertension. Klin Wochenschr 56:113–125

    Article  CAS  PubMed  Google Scholar 

  97. Ardiles LG, Figueroa CD, Mezzano SA (2003) Renal kallikrein-kinin system damage and salt sensitivity: insights from experimental models. Kidney Int Suppl 86:S2–S8

    Article  CAS  Google Scholar 

  98. Griol-Charhbili V, Sabbah L, Colucci J et al (2009) Tissue kallikrein deficiency and renovascular hypertension in the mouse. Am J Physiol Regul Integr Comp Physiol 296:R1385–R1391

    Article  CAS  PubMed  Google Scholar 

  99. Marchetti J, Imbert-Teboul M, Alhenc-Gelas F et al (1984) Kallikrein along the rabbit microdissected nephron: a micromethod for its measurement. Pflugers Arch 401:27–33

    Article  CAS  PubMed  Google Scholar 

  100. Pratt JH (2005) Central role for ENaC in development of hypertension. J Am Soc Nephrol 16:3154–3159

    Article  CAS  PubMed  Google Scholar 

  101. Alfie ME, Yang X-P, Hess F et al (1996) Salt-sensitive hypertension in bradykinin B2 receptor knockout mice. Biochem Biophys Res Commun 224:625–630

    Article  CAS  PubMed  Google Scholar 

  102. Hecquet C, Tan F, Marcic BM et al (2000) Human bradykinin B2 receptor is activated by kallikrein and other serine proteases. Mol Pharmacol 58:828–836

    Article  CAS  PubMed  Google Scholar 

  103. Huang W, Gallois Y, Bouby N et al (2001) Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proc Natl Acad Sci 98:13330–13334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bodin S, Chollet C, Goncalves-Mendes N et al (2009) Kallikrein protects against microalbuminuria in experimental type I diabetes. Kidney Int 76:395–403

    Article  CAS  PubMed  Google Scholar 

  105. Regoli D, Plante GE, Gobeil jr F (2012) Impact of kinins in the treatment of cardiovascular diseases. Pharmacol Therap 135:94–111

    Article  CAS  Google Scholar 

  106. Derkx FHM, Tan-Tjiong HL, Man In’T V et al (1979) Activation of inactive plasma renin by tissue kallikreins. J Clin Endocrinol Metab 49:765–769

    Article  CAS  PubMed  Google Scholar 

  107. Sealey JE, Atlas SA, Laragh JH et al (1978) Human urinary kallikrein converts inactive to active renin and is a possible physiological activator of renin. Nature 275:144–145

    Article  CAS  PubMed  Google Scholar 

  108. Macfarlane NA, Adetuyibi A, Mills IH (1974) Proceedings: changes in kallikrein excretion during arterial infusion of angiotensin. J Endocrinol 61:LXXII

    Google Scholar 

  109. Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556

    Article  CAS  PubMed  Google Scholar 

  110. Shimkets RA, Warnock DG, Bositis CM et al (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel. Cell 79:407–414

    Article  CAS  PubMed  Google Scholar 

  111. Rossier BC, Pradervand S, Schild L et al (2002) Epithelial sodium channel and the control of sodium balance: Interaction between genetic and environmental factors. Annu Rev Physiol 64:877–897

    Article  CAS  PubMed  Google Scholar 

  112. Patel AB, Chao J, Palmer LG (2012) Tissue kallikrein activation of the epithelial Na channel. Am J Physiol Renal Physiol 303:F540–F550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. White PC (1994) Disorders of aldosterone biosynthesis and action. New Engl J Med 331:250–258

    Article  CAS  PubMed  Google Scholar 

  114. Connell JMC, MacKenzie SM, Freel EM et al (2008) A lifetime of aldosterone excess: long-term consequences of altered regulation of aldosterone production for cardiovascular function. Endocr Rev 29:133–154

    Article  CAS  PubMed  Google Scholar 

  115. Yoshida H, Zhang JJ, Chao L et al (2000) Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Hypertension 35:25–31

    Article  CAS  PubMed  Google Scholar 

  116. Chao J, Zhang JJ, Lin K-F et al (1998) Human kallikrein gene delivery attenuates hypertension, cardiac hypertrophy, and renal injury in dahl salt-sensitive rats. Hum Gene Ther 9:21–31

    Article  CAS  PubMed  Google Scholar 

  117. Yayama K, Wang C, Chao L et al (1998) Kallikrein gene delivery attenuates hypertension and cardiac hypertrophy and enhances renal function in goldblatt hypertensive rats. Hypertension 31:1104–1110

    Article  CAS  PubMed  Google Scholar 

  118. Bledsoe G, Shen B, Yao Y et al (2006) Reversal of renal fibrosis, inflammation, and glomerular hypertrophy by kallikrein gene delivery. Huma Gene Ther 17:545–555

    Article  CAS  Google Scholar 

  119. Wolf WC, Yoshida H, Agata J et al (2000) Human tissue kallikrein gene delivery attenuates hypertension, renal injury, and cardiac remodeling in chronic renal failure. Kidney Int 58:730–739

    Article  CAS  PubMed  Google Scholar 

  120. Ilan Y, Droguett G, Chowdhury NR et al (1997) Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression. Proc Natl Acad Sci 94:2587–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lawrence MG, Lai J, Clements JA (2010) Kallikreins on steroids: Structure, function, and hormonal regulation of prostate-specific antigen and the extended lallikrein locus. Endocr Rev 31:407–446

    Article  CAS  PubMed  Google Scholar 

  122. Chao J, Miao Robert Q, Chen V et al (2001) Novel roles of kallistatin, a specific tissue kallikrein inhibitor, in vascular remodeling. Biol Chem 382:15–21

    Article  CAS  PubMed  Google Scholar 

  123. Chen L-M, Song Q, Chao L, Chao J (1995) Cellular localization of tissue kallikrein and kallistatin mRNAs in human kidney. Kidney Int 48:690–697

    Article  CAS  PubMed  Google Scholar 

  124. Wang MY, Day J, Chao L et al (1989) Human kallistatin, a new tissue kallikrein-binding protein: purification and characterization. Adv Exp Med Biol 247B:1–8

    CAS  PubMed  Google Scholar 

  125. Zhou GX, Chao L, Chao J (1992) Kallistatin: a novel human tissue kallikrein inhibitor. Purification, characterization, and reactive center sequence. J Biol Chem 267:25873–25880

    CAS  PubMed  Google Scholar 

  126. Chao J, Schmaier A, Chen L-M, Yang Z et al (1996) Kallistatin, a novel human tissue kallikrein inhibitor: Levels in body fluids, blood cells, and tissues in health and disease. J Lab Clin Med 127:612–620

    Article  CAS  PubMed  Google Scholar 

  127. Madeddu P, Parpaglia PP, Demontis MP et al (1995) Effects of kinin blockade on the blood pressure of salt-loaded pregnant rats. Hypertension 25:823–827

    Article  CAS  PubMed  Google Scholar 

  128. Chao J, Chao L (1995) Biochemistry, regulation and potential function of kallistatin. Biol Chem Hoppe Seyler 376:705–713

    CAS  PubMed  Google Scholar 

  129. da Costa PLN, Sirois P, Tannock IF et al (2014) The role of kinin receptors in cancer and therapeutic opportunities. Cancer Lett 345:27–38

    Google Scholar 

Download references

Acknowledgements

Thanks are due to DST-SERB (Govt. of India) and the University of Kalyani, Kalyani 741235, West Bengal, India, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amritlal Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandal, A., Chakraborti, T., Chakraborti, S. (2017). Antihypertensive Role of Kidney: Focus on Tissue Kallikreins. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_26

Download citation

Publish with us

Policies and ethics