Skip to main content

Roles of Candida albicans Aspartic Proteases in Host-Pathogen Interactions

  • Chapter
  • First Online:
Pathophysiological Aspects of Proteases

Abstract

Candida albicans—a common opportunistic fungal pathogen of humans—causes serious, disseminated invasive infections (candidiases) executed due to the action of several groups of virulence factors. One of the most critical is a family of secreted aspartic proteases involved in the destruction of host proteins and tissues. This chapter aims to characterize biochemical and structural properties of these enzymes that determine their functions and summarize their specific roles in the development and propagation of fungal infections. Candidal aspartic proteases deregulate the host biochemical homeostasis, by impairing the major proteolytic cascades such as the blood coagulation, the kallikrein-kinin system, and the complement system, by unleashing the activity of host proteases due to the degradation of specific endogenous inhibitors and by the inactivation of antimicrobial peptides and proteins produced by host cells. The degradation of important host proteins influences the fungal adhesion to the host cell surfaces, promotes the subsequent tissue damages, and enables the further dissemination of the pathogen. Confirmed multiple roles of candidal aspartic proteases in the host-pathogen interactions during candidiasis qualify these enzymes as promising potential targets for novel antifungal therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yapar N (2014) Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag 10:95–105

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Horn DL, Neofytos D, Anaissie EJ et al (2009) Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis 48:1695–1703

    Article  CAS  PubMed  Google Scholar 

  4. Pana ZD, Farmaki E, Roilides E (2014) Host genetics and opportunistic fungal infections. Clin Microbiol Infect 20:1254–1264

    Article  CAS  PubMed  Google Scholar 

  5. Eggimann P, Que YA, Revelly JP, Pagani JL (2015) Preventing invasive Candida infections. Where could we do better? J Hosp Infect 89:302–308

    Article  PubMed  Google Scholar 

  6. Perlroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 45:321–346

    Article  PubMed  Google Scholar 

  7. Kullberg BJ, Arendrup MC (2016) Invasive candidiasis. N Engl J Med 374:794–795

    PubMed  Google Scholar 

  8. Gudlaugsson O, Gillespie S, Lee K et al (2003) Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 37:1172–1177

    Article  PubMed  Google Scholar 

  9. Soll DR, Galask R, Schmid J et al (1991) Genetic dissimilarity of commensal strains of Candida spp. carried in different anatomical locations of the same healthy women. J Clin Microbiol 29:1702–1710

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cannon RD, Chaffin WL (1999) Oral colonization by Candida albicans. Crit Rev Oral Biol Med 10:359–383

    Article  CAS  PubMed  Google Scholar 

  11. Akpan A, Morgan R (2002) Oral candidiasis. Postgrad Med J 78:455–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Achkar JM, Fries BC (2010) Candida infections of the genitourinary tract. Clin Microbiol Rev 23:253–273

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mendling W, Brasch J, Cornely OA et al (2015) Guideline: vulvovaginal candidosis (AWMF 015/072), S2k (excluding chronic mucocutaneous candidosis). Mycoses S1:1–15

    Article  CAS  Google Scholar 

  14. Patil S, Rao RS, Majumdar B, Anil S (2015) Clinical appearance of oral Candida infection and therapeutic strategies. Front Microbiol 6:1391

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lewis RE (2009) Overview of the changing epidemiology of candidemia. Curr Med Res Opin 25:1732–1740

    Article  PubMed  CAS  Google Scholar 

  16. Diekema D, Arbefeville S, Boyken L et al (2012) The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis 73:45–48

    Article  PubMed  Google Scholar 

  17. Arendrup MC (2013) Candida and candidaemia. Susceptibility and epidemiology. Dan Med J 60:B4698

    PubMed  Google Scholar 

  18. Krcmery V, Barnes AJ (2002) Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect 50:243–260

    Article  CAS  PubMed  Google Scholar 

  19. Karkowska-Kuleta J, Rapala-Kozik M, Kozik A (2009) Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim Pol 56:211–224

    CAS  PubMed  Google Scholar 

  20. Naglik JR, Moyes DL, Wächtler B, Hube B (2011) Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect 13:963–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Polke M, Hube B, Jacobsen ID (2015) Candida survival strategies. Adv Appl Microbiol 91:139–235

    Article  PubMed  Google Scholar 

  22. Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10:168–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Karkowska-Kuleta J, Kozik A (2014) Moonlighting proteins as virulence factors of pathogenic fungi, parasitic protozoa and multicellular parasites. Mol Oral Microbiol 29:270–283

    Article  CAS  PubMed  Google Scholar 

  24. Karkowska-Kuleta J, Kozik A (2015) Cell wall proteome of pathogenic fungi. Acta Biochim Pol 62:339–351

    Article  CAS  PubMed  Google Scholar 

  25. Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schaller M, Borelli C, Korting HC, Hube B (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48:365–377

    Article  CAS  PubMed  Google Scholar 

  27. Hruskova-Heidingsfeldova O (2008) Secreted proteins of Candida albicans. Front Biosci 13:7227–7242

    Article  CAS  PubMed  Google Scholar 

  28. Höfs S, Mogavero S, Hube B (2016) Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. J Microbiol 54:149–169

    Article  PubMed  CAS  Google Scholar 

  29. Staib F (1965) Serum-proteins as nitrogen source for yeastlike fungi. Sabouraudia 4:187–193

    Article  CAS  PubMed  Google Scholar 

  30. Aoki W, Kitahara N, Miura N et al (2011) Comprehensive characterization of secreted aspartic proteases encoded by a virulence gene family in Candida albicans. J Biochem 150:431–438

    Article  CAS  PubMed  Google Scholar 

  31. Dos Santos ALS (2010) HIV aspartyl protease inhibitors as promising compounds against Candida albicans. World J Biol Chem 1:21–30

    Article  PubMed  PubMed Central  Google Scholar 

  32. Albrecht A, Felk A, Pichova I (2006) Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 281:688–694

    Article  CAS  PubMed  Google Scholar 

  33. Silva NC, Nery JM, Dias ALT (2014) Aspartic proteinases of Candida spp.: role in pathogenicity and antifungal resistance. Mycoses 57:1–11

    Article  CAS  PubMed  Google Scholar 

  34. Borelli C, Ruge E, Lee JH et al (2008) X-ray structures of Sap1 and Sap5: structural comparison of the secreted aspartic proteinases from Candida albicans. Proteins 72:1308–1319

    Article  CAS  PubMed  Google Scholar 

  35. Cutfield SM, Dodson EJ, Anderson BF et al (1995) The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors. Structure 3:1261–1271

    Article  CAS  PubMed  Google Scholar 

  36. Abad-Zapatero C, Goldman R, Muchmore SW et al (1996) Structure of a secreted aspartic protease from C. albicans complexed with a potent inhibitor: implications for the design of antifungal agents. Protein Sci 5:640–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Behnen J, Koster H, Neudert G et al (2012) Experimental and computational active site mapping as a starting point to fragment-based lead discovery. Chem Med Chem 7:248–261

    Article  CAS  PubMed  Google Scholar 

  38. Borelli C, Ruge E, Schaller M et al (2007) The crystal structure of the secreted aspartic proteinase 3 from Candida albicans and its complex with pepstatin A. Proteins 68:738–748

    Article  CAS  PubMed  Google Scholar 

  39. Stewart K, Abad-Zapatero C (2001) Candida proteases and their inhibition: prospects for antifungal therapy. Curr Med Chem 8:941–948

    Article  CAS  PubMed  Google Scholar 

  40. Monod M, Staib P, Borelli C (2013) Candidapepsin. In: Handbook of proteolytic enzymes, vol 1, pp 159–166

    Google Scholar 

  41. Delano WL (2006) The PyMol molecular graphics system. Delano Scientific LLC, San Carlos

    Google Scholar 

  42. Borg-von Zepelin M, Beggah S, Boggian K et al (1998) The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol Microbiol 28:543–554

    Article  CAS  PubMed  Google Scholar 

  43. Koelsch G, Tang J, Loy JA et al (2000) Enzymic characteristics of secreted aspartic proteases of Candida albicans. Biochim Biophys Acta 1480:117–131

    Article  CAS  PubMed  Google Scholar 

  44. Bochenska O, Rapala-Kozik M, Wolak N et al (2016) The action of ten secreted aspartic proteases of pathogenic yeast Candida albicans on major human salivary antimicrobial peptide, histatin 5. Act Biochi Pol 63:1–8

    Article  CAS  Google Scholar 

  45. Smolenski G, Sullivan PA, Cutfield SM, Cutfield JF (1997) Analysis of secreted aspartic proteinases from Candida albicans: purification and characterization of individual Sap1, Sap2 and Sap3 isoenzymes. Microbiology 143:349–356

    Article  CAS  PubMed  Google Scholar 

  46. Aoki W, Kitahara N, Miura N et al (2012) Candida albicans possesses Sap7 as a pepstatin A-insensitive secreted aspartic protease. PLoS ONE 7:1–9

    Article  CAS  Google Scholar 

  47. Schild L, Heyken A, de Groot PWJ et al (2011) Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryot Cell 10:98–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hube B (1998) Possible role of secreted proteinases in Candida albicans infections. Rev Iberoam Micol 15:65–68

    CAS  PubMed  Google Scholar 

  49. Cheng SC, Joosten LA, Kullberg BJ et al (2012) Interplay between Candida albicans and the mammalian innate host defense. Infect Immun 80:1304–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zipfel PF, Hallström T, Riesbeck K (2013) Human complement control and complement evasion by pathogenic microbes–tipping the balance. Mol Immunol 56:152–160

    Article  CAS  PubMed  Google Scholar 

  51. Naglik JR, Newport G, White TC et al (1999) In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun 67:2482–2490

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schaller M, Januschke E, Schackert C et al (2001) Different isoforms of secreted aspartyl proteinases (Sap) are expressed by Candida albicans during oral and cutaneous candidosis in vivo. J Med Microbiol 50:743–747

    Article  CAS  PubMed  Google Scholar 

  53. Staniszewska M, Siennicka K, Pilat J et al (2012) Role of aspartic proteinases in Candida albicans virulence. Part II: Expression of SAP1-10 aspartic proteinase during Candida albicans infections in vivo. Post Mikrobiol 51:137–142

    CAS  Google Scholar 

  54. Naglik JR, Moyes D, Makwana J et al (2008) Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 154:3266–3280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Staniszewska M, Bondarczyk MM, Siennicka K et al (2012) In vitro study of secreted aspartyl proteinases Sap1 to Sap3 and Sap4 to Sap6 expression in Candida albicans pleomorphic forms. Pol J Microbiol 61:247–256

    CAS  PubMed  Google Scholar 

  56. Naglik JR, Rodgers C, Shirlaw PJ et al (2003) Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis 188:469–479

    Article  CAS  PubMed  Google Scholar 

  57. Schaller M, Korting HC, Schafer W et al (1998) Investigations on the regulation of secreted aspartyl proteases in a model of oral candidiasis in vivo. Mycoses 41:69–73

    Article  CAS  PubMed  Google Scholar 

  58. Schaller M, Bein M, Korting HC et al (2003) The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 71:3227–3234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schaller M, Hube B, Ollert MW et al (1999) In vivo expression and localization of Candida albicans secreted aspartyl proteinases during oral candidiasis in HIV-infected patients. J Invest Dermatol 112:383–386

    Article  CAS  PubMed  Google Scholar 

  60. Staniszewska M, Bondaryk M, Malewski T, Kurzatkowski W (2014) Quantitative expression of Candida albicans aspartyl proteinase genes SAP7, SAP8, SAP9, SAP10 in human serum in vitro. Pol J Microbiol 63:15–20

    CAS  PubMed  Google Scholar 

  61. Staniszewska M, Bondaryk M, Zukowski K, Chudy M (2015) Role of SAP7-10 and morphological regulators (EFG1, CPH1) in Candida albicans hypha formation and adhesion to colorectal carcinoma Caco-2. Pol J Microbiol 64:203–210

    Article  PubMed  Google Scholar 

  62. Sanglard D, Hube B, Monod M et al (1997) A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65:3539–3546

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hube B, Sanglard D, Odds FC et al (1997) Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2 and SAP3 of Candida albicans attenuates virulence. Infect Immun 65:3529–3538

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kretschmar M, Felk A, Staib P et al (2002) Individual acid aspartic proteinases (Saps) 1–6 of Candida albicans are not essential for invasion and colonization of the gastrointestinal tract in mice. Microb Pathog 32:61–70

    Article  CAS  PubMed  Google Scholar 

  65. Felk A, Kretschmar M, Albrecht A et al (2002) Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun 70:3689–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Correia A, Lermann U, Teixeira L et al (2010) Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infect Immun 78:4839–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jackson BE, Wilhelmus KR, Hube B (2007) The role of secreted aspartyl proteinases in Candida albicans keratitis. Invest Ophthalmol Vis Sci 48:3559–3565

    Article  PubMed  Google Scholar 

  68. Stringaro A, Crateri P, Pellegrini G et al (1997) Ultrastructural localization of the secretory aspartyl proteinase in Candida albicans cell wall in vitro and in experimentally infected rat vagina. Mycopathologia 137:95–105

    Article  CAS  PubMed  Google Scholar 

  69. Hube B, Monod M, Schofield DA et al (1994) Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 14:87–99

    Article  CAS  PubMed  Google Scholar 

  70. Colina AR, Aumont F, Deslauriers N et al (1996) Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infect Immun 64:4514–4519

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Villar CC, Kashleva H, Nobile CJ et al (2007) Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun 75:2126–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Morschhäuser J, Virkola R, Korhonen TK, Hacker J (1997) Degradation of human subendothelial extracellular matrix by proteinase-secreting Candida albicans. FEMS Microbiol Lett 153:349–355

    Article  PubMed  Google Scholar 

  73. Ollert MW, Söhnchen R, Korting HC et al (1993) Mechanisms of adherence of Candida albicans to cultured human epidermal keratinocytes. Infect Immun 61:4560–4568

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ray TL, Payne CD (1988) Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect Immun 56:1942–1949

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Borg M, Rüchel R (1988) Expression of extracellular acid proteinase by proteolytic Candida spp. during experimental infection of oral mucosa. Infect Immun 56:626–631

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rüchel R (1986) Cleavage of immunoglobulins by pathogenic yeasts of the genus Candida. Microbiol Sci 3:316–319

    PubMed  Google Scholar 

  77. Marcotte H, Lavoie MC (1998) Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev 62:71–109

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gropp K, Schild L, Schindler S et al (2009) The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol Immunol 47:465–475

    Article  CAS  PubMed  Google Scholar 

  79. Luo S, Skerka C, Kurzai O, Zipfel PF (2013) Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans. Mol Immunol 56:161–169

    Article  CAS  PubMed  Google Scholar 

  80. Svoboda E, Schneider AE, Sándor N et al (2015) Secreted aspartic protease 2 of Candida albicans inactivates factor H and the macrophage factor H-receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18). Immunol Lett 168:13–21

    Article  CAS  PubMed  Google Scholar 

  81. Rapala-Kozik M, Karkowska-Kuleta J, Ryzanowska A et al (2010) Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp. Biol Chem 391:823–830

    Article  CAS  PubMed  Google Scholar 

  82. Rüchel R (1983) On the renin-like activity of Candida proteinases and activation of blood coagulation in vitro. Zentralbl Bakteriol Mikrobiol Hyg A 255:368–379

    PubMed  Google Scholar 

  83. Kaminishi H, Hamatake H, Cho T et al (1994) Activation of blood clotting factors by microbial proteinases. FEMS Microbiol Lett 121:327–332

    Article  CAS  PubMed  Google Scholar 

  84. Frick IM, Björck L, Herwald H (2007) The dual role of the contact system in bacterial infectious disease. Thromb Haemost 98:497–502

    Article  CAS  PubMed  Google Scholar 

  85. Cockcroft JR, Chowienczyk PJ, Brett SE, Ritter JM (1994) Effect of NG-monomethyl-L-arginine on kinin-induced vasodilation in the human forearm. Br J Clin Pharmacol 38:307–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Golias C, Charalabopoulos A, Stagikas D el al (2007) The kinin system-bradykinin: biological effects and clinical implications. Multiple role of the kinin system-bradykinin. Hippokratia 11:124–128

    Google Scholar 

  87. Imamura T, Tanase S, Szmyd G et al (2005) Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus. J Exp Med 201:1669–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu Y (2015) Contact pathway of coagulation and inflammation. Thromb J 13:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Lalmanach G, Naudin C, Lecaille F, Fritz H (2010) Kininogens: more than cysteine protease inhibitors and kinin precursors. Biochimie 92:1568–1579

    Article  CAS  PubMed  Google Scholar 

  90. Kaminishi H, Tanaka M, Cho T et al (1990) Activation of the plasma kallikrein-kinin system by Candida albicans proteinase. Infect Immun 58:2139–2143

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bras G, Bochenska O, Rapala-Kozik M et al (2012) Extracellular aspartic protease SAP2 of Candida albicans yeast cleaves human kininogens and releases proinflammatory peptides, Met-Lys-bradykinin and des-Arg(9)-Met-Lys-bradykinin. Biol Chem 393:829–839

    Article  CAS  PubMed  Google Scholar 

  92. Kozik A, Gogol M, Bochenska O et al (2015) Kinin release from human kininogen by 10 aspartic proteases produced by pathogenic yeast Candida albicans. BMC Microbiol 15:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Rüchel R (1983) On the role of proteinases from Candida albicans in the pathogenesis of acronecrosis. Zentralbl Bakteriol Mikrobiol Hyg A 255:524–536

    PubMed  Google Scholar 

  94. Kaminishi H, Miyaguchi H, Tamaki T et al (1995) Degradation of humoral host defense by Candida albicans proteinase. Infect Immun 63:984–988

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tsushima H, Mine H, Kawakami Y et al (1994) Candida albicans aspartic proteinase cleaves and inactivates human epidermal cysteine proteinase inhibitor, cystatin A. Microbiology 140:167–171

    Article  CAS  PubMed  Google Scholar 

  96. Gogol M, Ostrowska D, Klaga K et al (2016) Inactivation of α1-proteinase inhibitor by Candida albicans aspartic proteases favors the epithelial and endothelial cell colonization in the presence of neutrophil extracellular traps. Acta Biochim Pol 63:1163

    Article  CAS  Google Scholar 

  97. Zawrotniak M, Rapala-Kozik M (2013) Neutrophil extracellular traps (NETs)—formation and implications. Acta Biochim Pol 60:277–284

    CAS  PubMed  Google Scholar 

  98. Moyes DL, Richardson JP, Naglik JR (2015) Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface. Virulence 6:338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu H, Downs D, Ghosh K et al (2013) Candida albicans secreted aspartic proteases 4–6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism. FASEB J 27:2132–2144

    Article  CAS  PubMed  Google Scholar 

  100. Johansson AC, Appelqvist H, Nilsson C et al (2010) Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 15:527–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pietrella D, Rachini A, Pandey N et al (2010) The inflammatory response induced by aspartic proteases of Candida albicans is independent of proteolytic activity. Infect Immun 78:4754–4762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Beauséjour A, Grenier D, Goulet JP, Deslauriers N (1998) Proteolytic activation of the interleukin-1beta precursor by Candida albicans. Infect Immun 66:676–681

    PubMed  PubMed Central  Google Scholar 

  103. Pietrella D, Pandey N, Gabrielli E et al (2013) Secreted aspartic proteases of Candida albicans activate the NLRP3 inflammasome. Eur J Immunol 43:679–692

    Article  CAS  PubMed  Google Scholar 

  104. Jiménez-López C, Lorenz MC (2013) Fungal immune evasion in a model host-pathogen interaction: candida albicans versus macrophages. PLoS Pathog 9(11):e1003741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Cheng SC, Sprong T, Joosten LA et al (2012) Complement plays a central role in Candida albicans-induced cytokine production by human PBMCs. Eur J Immunol 42:993–1004

    Google Scholar 

  106. Ran Y, Iwabuchi K, Yamazaki M et al (2013) Secreted aspartic proteinase from Candida albicans acts as a chemoattractant for peripheral neutrophils. J Dermatol Sci 72:191–193

    Article  CAS  PubMed  Google Scholar 

  107. Hornbach A, Heyken A, Schild L et al (2009) The glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction of Candida albicans with human neutrophils. Infect Immun 77:5216–5224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pericolini E, Gabrielli E, Amacker M et al (2015) Secretory aspartyl proteinases cause vaginitis and can mediate vaginitis caused by Candida albicans in mice. MBio 6:e00724–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gabrielli E, Sabbatini S, Roselletti E et al (2016) In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of Candida albicans. Virulence 29:1–7

    Google Scholar 

  110. Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  Google Scholar 

  111. Rapala-Kozik M, Bochenska O, Zawrotniak M et al (2015) Inactivation of the antifungal and immunomodulatory properties of human cathelicidin LL-37 by aspartic proteases produced by the pathogenic yeast Candida albicans. Infect Immun 83:2518–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Meiller TF, Hube B, Schild L et al (2009) A novel immune evasion strategy of Candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS ONE 4:e5039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Vandamme D, Landuyt B, Luyten W, Schoofs L (2012) A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 280:22–35

    Article  CAS  PubMed  Google Scholar 

  114. Bochenska O, Rapala-Kozik M, Wolak N et al (2015) Inactivation of human kininogen-derived antimicrobial peptides by secreted aspartic proteases produced by the pathogenic yeast Candida albicans. Biol Chem 396:1369–1375

    Article  CAS  PubMed  Google Scholar 

  115. Frick IM, Akesson P, Herwald H et al (2006) The contact system—A novel branch of innate immunity generating antibacterial peptides. EMBO J 25:5569–5578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nordahl EA, Rydengård V, Mörgelin M, Schmidtchen A (2005) Domain 5 of high molecular weight kininogen is antibacterial. J Biol Chem 280:34832–34839

    Article  CAS  PubMed  Google Scholar 

  117. Ganguly S, Mitchell AP (2011) Mucosal biofilm of Candida albicans. Curr Opin Microbiol 14:380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mendes A, Mores AU, Carvalho AP et al (2007) Candida albicans biofilms produce more secreted aspartyl protease than the planktonic cells. Biol Pharm Bull 30:1813–1815

    Article  CAS  PubMed  Google Scholar 

  119. Xu H, Sobue T, Bertolini M, Thompson A, Dongari-Bagtzoglou A (2016) Streptocuccus oralis and Candida albicans synergistically activate calpain to degrade E-cadherin from oral epithelial junctions. J Infect Dis 13:pii:jiw201

    Google Scholar 

  120. Dutton LC, Jenkinson HF, Lamont RJ, Nobbs AH (2016) Role of Candida albicans secreted aspartyl protease Sap9 in interkingdom biofilm formation. Pathog Dis 74:pii:ftw005

    Google Scholar 

  121. Hrusková-Heidingsfeldová O, Dostál J, Majer F et al (2009) Two aspartic proteinases secreted by the pathogenic yeast Candida parapsilosis differ in expression pattern and catalytic properties. Biol Chem 390:259–268

    Google Scholar 

  122. Dostál J, Pecina A, Hrusková-Heidingsfeldová O et al (2015) Atomic resolution crystal structure of Sapp2p, a secreted aspartic protease from Candida parapsilosis. Acta Cryst D 71:2494–2504

    Article  CAS  Google Scholar 

  123. Vinterová Z, Sanda M, Dostál J et al (2011) Evidence for the presence of proteolytically active secreted aspartic proteinase 1 of Candida parapsilosis in the cell wall. Protein Sci 20:2004–2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Hrušková-Heidingsfeldová O, Dostál J, Hamal P et al (2001) Enzymological characterization of secreted proteinases from Candida parapsilosis and Candida lusitaniae. Collect Czech Chem Commun 66:1707–1719

    Article  Google Scholar 

  125. Dostál J, Brynda J, Hrusková-Heidingsfeldová O et al (2009) The crystal structure of the secreted aspartic protease 1 from Candida parapsilosis in complex with pepstatin A. J Struct Biol 167:145–152

    Article  PubMed  CAS  Google Scholar 

  126. Horváth P, Nosanchuk JD, Hamari Z et al (2012) The identification of gene duplication and the role of secreted aspartyl proteinase 1 in Candida parapsilosis virulence. J Infect Dis 205:923–933

    Article  PubMed  CAS  Google Scholar 

  127. Merkerová M, Dostál J, Hradilek M et al (2006) Cloning and characterization of Sapp2p, the second aspartic proteinase isoenzyme from Candida parapsilosis. FEMS Yeast Res 6:1018–1026

    Article  PubMed  CAS  Google Scholar 

  128. Bras G, Bochenska O, Rapala-Kozik M et al (2013) Release of biologically active kinin peptides, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin from human kininogens by two major secreted aspartic proteases of Candida parapsilosis. Peptides 48:114–123

    Article  CAS  PubMed  Google Scholar 

  129. Parra-Ortega B, Cruz-Torres H, Villa-Tanaca L, Hernández-Rodríguez C (2009) Phylogeny and evolution of the aspartyl protease family from clinically relevant Candida species. Mem Inst Oswaldo Cruz 104:505–512

    Article  CAS  PubMed  Google Scholar 

  130. Symersky J, Monod M, Foundling SI (1997) High-resolution structure of the extracellular aspartic proteinase from Candida tropicalis yeast. Biochemistry 36:12700–12710

    Article  CAS  PubMed  Google Scholar 

  131. Zaugg C, Borg-Von Zepelin M, Reichard U et al (2001) Secreted aspartic proteinase family of Candida tropicalis. Infect Immun 69:405–412

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kontoyiannis D, Vaziri I, Hanna H et al (2001) Risk factors for Candida tropicalis fungemia in patients with cancer. Clin Infect Dis 33:1676–1681

    Article  CAS  PubMed  Google Scholar 

  133. Silva S, Negri M, Henriques M et al (2010) Silicone colonization by non-Candida albicans Candida species in the presence of urine. J Med Microbiol 59:747–754

    Article  CAS  PubMed  Google Scholar 

  134. Okumura Y, Inoue N, Nikai T (2007) Isolation and characterization of a novel acid proteinase, tropiase, from Candida tropicalis IFO 0589. Nihon Ishinkin Gakkai Zasshi 48:19–25

    Article  CAS  PubMed  Google Scholar 

  135. Chen YV, Rosli R, Fong SH et al (2012) Histopathological characteristics of experimental Candida tropicalis induced acute systemic candidiasis in BALB/c Mice. Int J Zool Res 1:12–22

    Google Scholar 

  136. Kaur R, Ma B, Cormack BP (2007) A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl AcadSci USA 104:7628–7633

    Article  CAS  Google Scholar 

  137. Nguyen JT, Hamada Y, Kimura T, Kiso Y (2008) Design of potent aspartic protease inhibitors to treat various diseases. Arch Pharm 341:523–535

    Article  CAS  Google Scholar 

  138. Braga-Silva LA, Santos ALS (2011) Aspartic protease inhibitors as potential anti-Candida albicans drugs: impacts on fungal biology, virulence and pathogenesis. Curr Med Chem 18:2401–2419

    Article  CAS  PubMed  Google Scholar 

  139. Santos ALS (2011) Aspartic proteases of human pathogenic fungi are prospective targets for the generation of novel and effective antifungal inhibitors. Curr Enz Inhib 7:96–118

    Article  Google Scholar 

  140. Bondaryk M, Kurzątkowski W, Staniszewska M (2013) Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: mode of action and resistance development. Postępy Dermatol Alergol 30:293–301

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kuriyama T, Williams DW, Lewis MA (2003) In vitro secreted aspartyl proteinase activity of Candida albicans isolated from oral diseases and healthy oral cavities. Oral Microbiol Immunol 18:405–407

    Article  CAS  PubMed  Google Scholar 

  142. Schaller M, Schäfer W, Korting HC, Hube B (1998) Differential expression of secreted aspartyl proteinases in a model of human oral candidiosis and in patient samples from oral cavity. Mol Microbiol 29:605–615

    Article  CAS  PubMed  Google Scholar 

  143. Lermann U, Morschhäuser J (2008) Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiol 154:3281–3295

    Article  CAS  Google Scholar 

  144. Rüchel R, Ritter B, Schaffrinski M (1990) Modulation of experimental systemic murine candidosis by intravenous pepstatin. Zentralbl Bakteriol Mikrobiol Hyg 273:391–403

    Article  Google Scholar 

  145. Cauda R, Tacconelli M, Tumbarello M et al (1999) Role of protease inhibitors in preventing recurrent oral candidosis in patients with HIV infection: a prospective case-control study. J Acquir Immun Defic Syndr 21:20–25

    Article  CAS  Google Scholar 

  146. Borg-Von Zeppelin M, Meyer I, Thomssen R et al (1999) HIV-protease inhibitors reduce cell adherence of Candida albicans strains by inhibition of yeast secreted aspartic proteases. J Investig Dermatol 113:747–751

    Article  Google Scholar 

  147. Cassone A, De Bernardis F, Torosantucci A et al (1999) In vitro and in vivo anticandidal activity of human immunodeficiency vírus protease inhibitors. J Infect Dis 180:448

    Article  CAS  PubMed  Google Scholar 

  148. Pichova I, Pavlickova L, Dostal J et al (2001) Secreted aspartic proteases of Candida albicans, Candida tropicalis, Candida parapsilosis and Candida lusitaneae. Inhibition with peptidomimetic inhibitors. Eur J Biochem 268:2669–2677

    Article  CAS  PubMed  Google Scholar 

  149. Santos A, Braga-Silva L (2013) Aspartic protease inhibitors: effective drugs against the human fungal pathogen Candida albicans. Mini Rev Med Chem 13:155–162

    Article  CAS  PubMed  Google Scholar 

  150. De Bernardis F, Liu H, O’Mahony R et al (2007) Human domain antibodies against virulence traits of candida albicans inhibits fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. J Infect Dis 195:149–157

    Article  PubMed  Google Scholar 

  151. Fear G, Komarnytsky S, Raskin I (2007) Protease inhibitors and their peptidomimetic derivatives as potential drugs. Pharmacol Ther 113:354–368

    Article  CAS  PubMed  Google Scholar 

  152. Cadicamo C, Mortier J, Wolber G et al (2013) Design, synthesis, inhibition studies, and molecular modeling of pepstatin analogs addressing different secreted aspartic proteases of Candida albicans. Biochem Pharmacol 85:881–887

    Article  CAS  PubMed  Google Scholar 

  153. Zielinska P, Staniszewska M, Bondaryk M et al (2015) Design and studies o multiple mechanism of anti-Candida activity of new potent-Trp-rich peptide dendrimers. Eur J Med Chem 105:106–119

    Article  CAS  PubMed  Google Scholar 

  154. Höfling JF, Mardegan RC, Anibal PC et al (2011) Evaluation of antifungal activity of medicinal plant extracts against oral Candida albicans and proteinases. Mycopathologia 172:117–124

    Article  PubMed  Google Scholar 

  155. Sato T, Nagai K, Shibazaki M et al (1994) Novel aspartyl protease inhibitors, YF-0200R-A and B. J Antibiot (Tokyo) 47:566–570

    Article  CAS  Google Scholar 

  156. Christopeit T, Øverbø K, Danielson H, Nilsen IW (2013) Efficient screening of marine, FRET extracts for protease inhibitors by combining fret based activity assays and surface plasmon resonance spectroscopy based binding assays. Mar Drugs 11:4279–4293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Hajjar FHE, Jebali A, Hekmatimoghaddam S (2015) The inhibition of Candida albicans secreted aspartyl proteinase by triangular gold nanoparticles. Nanomedicine J 2:54–59

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Centre of Poland (grant no. 571 UMO-2012/05/B/NZ1/00003 awarded to M.R.-K). Faculty of Biochemistry, Biophysics, and Biotechnology of Jagiellonian University is a partner of the Leading National Research Center (KNOW) supported by the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rapala-Kozik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gogol, M., Bochenska, O., Zawrotniak, M., Karkowska-Kuleta, J., Zajac, D., Rapala-Kozik, M. (2017). Roles of Candida albicans Aspartic Proteases in Host-Pathogen Interactions. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_15

Download citation

Publish with us

Policies and ethics