Skip to main content

Abstract

The natural leaf senescence is the last stage of leaf development and is a highly genetically regulated process. Induced leaf senescence, instead, usually occurs in detached leaves or in plants placed in dark conditions under postharvest storage. In both cases, an oxidative burst is a typical feature of this phenomenon and includes a significant increment in reactive oxygen species (ROS), such as superoxide anion, hydrogen peroxide, hydroxyl radical, and singlet oxygen. Thus, ROS play a key role in leaf senescence process. Under normal (i.e., non-stressed) conditions, the levels of ROS are controlled and balanced by the antioxidant systems present in leaves. The leaf cells act in the defense response against the accumulation of ROS by enhancing the activity of some key enzymes such as catalase (CAT) and superoxide dismutase (SOD). In addition, the ascorbate–glutathione cycle, also known as Asada–Halliwell cycle, is the most important enzymatic antioxidant system acting in the leaf cells during senescence. The leaves are considered the main target of ROS production, and in particular, the photosynthetic apparatus and the related molecules act to support the light perception and photosynthesis activity (chlorophylls and carotenoids).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1O2:

Singlet oxygen

AAO:

Aldehyde oxygenase

ABA:

Abscisic acid

ACO:

1-Aminocyclopropane-1-carboxylate oxidase

AOI:

IAA oxidase

APX:

Ascorbate peroxidase

AsA:

Ascorbate

ATG:

Affecting autophagy

CAT:

Catalase

DHA:

Dehydroascorbate

DHAR:

Dehydroascorbate reductase

GR:

Glutathione reductase

GSH:

Glutathione

GSH:

Reduced glutathione

GSSG:

Oxidized form of glutathione

H2O2:

Hydrogen peroxide

IAA:

Indole acetic acid

JA:

Jasmonic acid

MDHA:

Monodehydroascorbate reductase

MeJA:

Methyl jasmonate

NahG:

Naphthalene oxygenase

NCED:

9-cis-Epoxycarotenoid dioxygenase

NIT1-3:

Nitrilases

O2ˉ:

Superoxide anion

OH˙:

Hydroxyl radical

PAO:

Pheophorbide a oxygenase

ROS:

Reactive oxygen species

SA:

Salicylic acid

SAGs:

Senescence-associated genes

SARK:

Senescence-associated receptor-like kinase

SOD:

Superoxide dismutase

TSA1:

Tryptophan synthase

References

  • Antonacci S, Natalini A, Cabassi G et al (2011) Cloning and gene expression analysis of the phospholipase C in wounded spinach leaves during postharvest storage. Postharvest Biol Technol 59:43–52

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bakshi M, Oelmüller R (2014) WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav 9(2):e27700. doi:10.4161/psb.27700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balazadeh S, Kwasniewski M, Caldana C et al (2011) ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 4(2):346–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal. Curr Sci India 89:1113–1121

    CAS  Google Scholar 

  • Bieker S, Riester L, Stahl M et al (2012) Senescence-specific alteration of hydrogen peroxide levels in Arabidopsis thaliana and oilseed rape spring variety Brassica napus L. cv. Mozart. J Integr Plant Biol 54:540–554

    Article  CAS  PubMed  Google Scholar 

  • Biswal B (1995) Carotenoid catabolism during leaf senescence and its control by light. J Photochem Photobiol B Biol 30:3–13

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48(2):181–199

    Article  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E et al (2003) The molecular analysis of leaf senescence–a genomics approach. Plant Biotechnol J 1(1):3–22

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E et al (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Cocetta G, Baldassarre V, Spinardi A et al (2014) Effect of cutting on ascorbic acid oxidation and recycling in fresh-cut baby spinach (Spinacia oleracea L.) leaves. Postharvest Biol Technol 88:8–16

    Article  CAS  Google Scholar 

  • Cutler AJ, Krochko JO (1999) Formation and breakdown of ABA. Trend Plant Sci 4:472–478

    Article  CAS  Google Scholar 

  • Ferrante A, Mensuali-Sodi A, Serra G et al (2002) Effects of ethylene and cytokinins on vase life of cut Eucalyptus parvifolia Cambage branches. Plant Growth Regul 38:119–125

    Article  CAS  Google Scholar 

  • Ferrante A, Incrocci L, Maggini R et al (2004) Colour changes of fresh-cut leafy vegetables during storage. J Food Agric Environ 2(3&4):40–44

    Google Scholar 

  • Ferrante A, Martinetti L, Maggiore T (2009) Biochemical changes in cut vs. intact lamb’s lettuce (Valerianella olitoria) leaves during storage. Int J Food Sci Tech 44:1050–1056

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell BT (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Gadjev I, Vanderauwera S, Gechev TS et al (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol 113(2):313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM et al (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Gepstein S, Thimann KV (1980) Changes in the abscisic acid content of oat leaves during senescence. Proc Natl Acad Sci 77:2050–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gepstein S, Sabehi G, Carp MJ et al (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36(5):629–642

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Gan SS (2014) Translational researches on leaf senescence for enhancing plant productivity and quality. J Exp Bot 65(14):3901–3913

    Article  PubMed  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27(5):521–549

    Article  CAS  Google Scholar 

  • Hajouj T, Michelis R, Gepstein S (2000) Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Physiol 124(3):1305–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He YH, Fukushige H, Hildebrand DF, Gan SS (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung KT, Kao CH (2004) Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. J Plant Physiol 161:1347–1357

    Article  CAS  PubMed  Google Scholar 

  • Hunter DA, Yoo SD, Butcher SM (1999) Expression of 1-aminocyclopropane-1-carboxylate oxidase during leaf ontogeny in white clover. Plant Physiol 120(1):131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plants 4(3):393–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jibran R, Hunter DH, Dijkwel PP (2013) Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol 82:547–561

    Article  CAS  PubMed  Google Scholar 

  • Jiménez A, Hernández JA, Pastori G et al (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118(4):1327–1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic-nitrogen use efficiency and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mungbean (Vigna radiata L.) Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 178:9–18

    Article  Google Scholar 

  • Khan MIR, Khan NA, Masood A, Per TS, Asgher M (2016a) Hydrogen peroxide alleviates nickel-inhibited photosynthetic responses through increase in use-efficiency of nitrogen and sulfur, and glutathione production in mustard. Front Plant Sci 7:44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016b) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11

    Article  CAS  Google Scholar 

  • Li H, He J, Yang X et al (2016) Glutathione-dependent induction of local and systemic defense against oxidative stress by exogenous melatonin in cucumber (Cucumis sativus L.) J Pineal Res 60(2):206–216

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8:272–278

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Ling Q, Jarvis P (2016) Plant signaling: ubiquitin pulls the trigger on chloroplast degradation. Curr Biol 26(1):R38–R40

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, He C (2016) Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. Plant Cell Rep 35(5):995–1007

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Phys Plant Mol Biol 47:127–158

    Article  CAS  Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H et al (1996) Chlorophyll breakdown in senescent leaves. Plant Physiol 112:1403–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N et al (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Morris K, Mackerness SAH, Page T et al (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23:677–685

    Article  CAS  PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31(3):203–216

    Article  Google Scholar 

  • Navabpour S, Morris K. Allen R et al (2003) Expression of senescence- enhanced genes in response to oxidative stress J Exp Bot 54:2285–2292

    Google Scholar 

  • Noh YS, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181–194

    Article  CAS  PubMed  Google Scholar 

  • Nooden LD (1988) The phenomena of senescence and aging. In: Nooden LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego

    Google Scholar 

  • Oda-Yamamizo C, Mitsuda N, Sakamoto S et al (2016) The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Sci Rep 9(6):23609. doi:10.1038/srep23609

    Article  Google Scholar 

  • Oh SA, Lee SY, Chung IK et al (1996) A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol 30(4):739–754

    Article  CAS  PubMed  Google Scholar 

  • Quirino BF, Normanly J, Amasino RM (1999) Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol Biol 40:267–278

    Article  CAS  PubMed  Google Scholar 

  • Ramel F, Ksas B, Akkari E et al (2013) Light-induced acclimation of the Arabidopsis chlorina1 mutant to singlet oxygen. Plant Cell 25(4):1445–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenvasser S, Mayak S, Friedman H (2006) Increase in reactive oxygen species (ROS) and in senescence associated gene transcript (SAG) levels during dark induced senescence of Pelargonium cuttings, and the effect of gibberellic acid. Plant Sci 170:873–879

    Article  CAS  Google Scholar 

  • Rosenwasser S, Rot I, Sollner E (2011) Organelles contribute differentially to reactive oxygen species-related events during extended darkness. Plant Physiol 156(1):185–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salleh FM, Evans K, Goodall B (2012) A novel function for a redox-related LEA protein (SAG21/AtLEA5) in root development and biotic stress responses. Plant Cell Environ 35(2):418–429

    Article  CAS  PubMed  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 23(7):187

    Google Scholar 

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448

    Article  CAS  Google Scholar 

  • Song Y, Yang C, Gao S (2014) Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol Plant 7(12):1776–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Xiang F, Zhang G et al (2016) Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana. Front Plant Sci 19(7):181

    Google Scholar 

  • Spinardi A, Ferrante A (2012) Effect of storage temperature on quality changes of minimally processed of baby lettuce. J Food Agric Environ 10(1):38–42

    CAS  Google Scholar 

  • Suzuki N, Miller G, Morales J et al (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • van der Graaff E, Schwacke R, Schneider A et al (2006) Transcription analysis of arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver LM, Gan S, Quirino B et al (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37(3):455–469

    Article  CAS  PubMed  Google Scholar 

  • Weidhase R, Kramell H, Lehmann J et al (1987) Methyl jasmonate-induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Sci 51:177–186

    Article  CAS  Google Scholar 

  • Woo HR, Kim JH, Nam HG et al (2013) Plant leaf senescence and death – regulation by multiple layers of control and implications for aging in general. J Cell Sci 126:4823–4833

    Article  CAS  PubMed  Google Scholar 

  • Woo HR, Koo HJ, Kim J et al (2016) Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome in Arabidopsis. Plant Physiol 171(1):452–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Burgess P, Zhang X et al (2016) Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. J Exp Bot 67(6):1979–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6(1):79–84

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Ferrante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Trivellini, A., Cocetta, G., Francini, A., Ferrante, A. (2017). Reactive Oxygen Species Production and Detoxification During Leaf Senescence. In: Khan, M., Khan, N. (eds) Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-10-5254-5_5

Download citation

Publish with us

Policies and ethics