Skip to main content

Biotechnological Perspective of Reactive Oxygen Species (ROS)-Mediated Stress Tolerance in Plants

  • Chapter
  • First Online:

Abstract

All environmental cues lead to develop secondary stress conditions like osmotic and oxidative stress conditions that reduces average crop yields by more than 50% every year. The univalent reduction of molecular oxygen (O2) in metabolic reactions consequently produces superoxide anions (O2 •−) and other reactive oxygen species (ROS) ubiquitously in all compartments of the cell that disturbs redox potential and causes threat to cellular organelles. The production of ROS further increases under stress conditions and especially in combination with high light intensity. Plants have evolved different strategies to minimize the accumulation of excess ROS like avoidance mechanisms such as physiological adaptation, efficient photosystems such as C4 or CAM metabolism and scavenging mechanisms through production of antioxidants and antioxidative enzymes. Ascorbate-glutathione pathway plays an important role in detoxifying excess ROS in plant cells, which includes superoxide dismutase (SOD) and ascorbate peroxidase (APX) in detoxifying O2 •−radical and hydrogen peroxide (H2O2) respectively, monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) involved in recycling of reduced substrates such as ascorbate and glutathione. Efficient ROS management is one of the strategies used by tolerant plants to survive and perform cellular activities under stress conditions. The present chapter describes different sites of ROS generation and and their consequences under abiotic stress conditions and also described the approaches to overcome oxidative stress through genomics and genetic engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APX:

Ascorbate peroxidase

ASA:

Ascorbate

CAT:

Catalase

DHAR:

Dehydroascorbate reductase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

MDHAR:

Monodehydroascorbate reductase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Achary VM, Reddy CS, Pandey P, Islam T, Kaul T, Reddy MK (2015) Glutathione reductase a unique enzyme: molecular cloning, expression and biochemical characterization from the stress adapted C4 plant, Pennisetum glaucum (L.) R. Br. Mol Biol Rep 42:947–962

    Article  CAS  PubMed  Google Scholar 

  • Al-Taweel K, Iwaki T, Yabuta Y, Shigeoka S, Murata N, Wadano A (2007) A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiol 145:258–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkin OK, Macherel D (2009) The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot 103:581–597

    Article  CAS  PubMed  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166(4):919–928

    Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreto P, Okura VK, Neshich IAP, Maia IG, Arruda P (2014) Overexpression of UCP1 in tobacco induces mitochondrial biogenesis and amplifies a broad stress response. BMC Plant Biol 14:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci India 89:1113–1121

    CAS  Google Scholar 

  • Bielski BHJ, Arudi RL, Sutherland MW (1983) A study of the reactivity of HO2/O2 with unsaturated fatty-acids. J Biol Chem 258:4759–4761

    CAS  PubMed  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138:447–462

    Article  CAS  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Carmody M, Crisp PA, d’Alessandro S, Ganguly D, Gordon M, Havaux M, Albrecht-Borth V, Pogson BJ (2016) Uncoupling high light responses from singlet oxygen retrograde signaling and spatial-temporal systemic acquired acclimation. Plant Physiol 171:1734–1749

    Article  PubMed  PubMed Central  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caverzan A, Casassola A, Brammer SP (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating folia ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q-J, Zhou H-M, Chen J, Wang X-C (2006) A Gateway-based platform for multigene plant transformation. Plant Mol Biol 62(6):927–936

    Google Scholar 

  • Chen QJ, Xie M, Ma XX, Dong L, Chen J, Wang XC (2010) Missa is a highly efficient in vivo DNA assembly method for plant multiple- gene transformation. Plant Physiol 153(1):41–51

    Google Scholar 

  • Chen YH, Han YY, Zhang M, Zhou S, Kong XZ, Wang W (2016) Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PLoS One 11(4)

    Google Scholar 

  • Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  CAS  PubMed  Google Scholar 

  • Chiang CM, Chien HL, Chen LFO, Hsiung TC, Chiang MC, Chen SP, Lin KH (2015) Overexpression of the genes coding ascorbate peroxidase from Brassica campestris enhances heat tolerance in transgenic Arabidopsis thaliana. Biol Plant 59:305–315

    Article  CAS  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signalling in plants under abiotic stress. Plant Signal Behav 8:e23681

    Article  PubMed  CAS  Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci U S A 93:9970–9974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creissen G Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell Online 11(7):1277–1292

    Google Scholar 

  • Dabrowska G, Katai A, Goc A, Szechynska-Hebda M, Skrzypek E (2007) Characteristics of the plant ascorbate peroxidase family. Acta Biol Cracov Ser Bot 49:7–17

    Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Abreu Neto JB, Frei M (2015) Microarray meta-analysis focused on the response of genes involved in redox homeostasis to diverse abiotic stresses in rice. Front Plant Sci 6:1260

    PubMed  Google Scholar 

  • Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Antonio Hernández J, Burgos L (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol J 11(8):976–985

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ, Turkan I, Krieger-Liszkay A (2016) Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171:1541–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do H, Kim IS, Jeon BW, Lee CW, Park AK, Wi AR, Shin SC, Park H, Kim YS, Yoon HS, Kim HW, Lee JH (2016) Structural understanding of the recycling of oxidized ascorbate by dehydroascorbate reductase (OsDHAR) from Oryza sativa L. japonica. Sci Rep 6:19498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Sharifi M (2009) Alleviation of water deficit stress effects by foliar application of ascorbic acid on Zea mays L. J Agron Crop Sci 195:347–355

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elstner EF (1987) Metabolism of activated oxygen species. In: Davies DD (ed) Biochemistry of plants. Academic, London, p 253e315

    Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    Article  CAS  PubMed  Google Scholar 

  • Fan HF, Ding L, Du CX, Wu X (2014) Effect of short-term water deficit stress on antioxidative systems in cucumber seedling roots. Bot Stud 55:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng ZZ, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu JG (2010) Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. Environ Pollut 158:3539–3545

    Article  CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254

    CAS  PubMed  Google Scholar 

  • Gaber A, Yoshimura K, Yamamoto T, Yabuta Y, Takeda T, Miyasaka H, Nakano Y, Shigeoka S Glutathione peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiol Plant 128(2):251–262

    Google Scholar 

  • Gichner T, Patková Z, Száková J, Demnerová K (2004) Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves. Mutat Res Genet Toxicol Environ Mutagen 559(1-2):49–57

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Giraud H, Lehermeier C, Bauer E, Falque M, Segura V, Bauland C, Camisan C, Campo L, Meyer N, Ranc N, Schipprack W, Flament P, Melchinger AE, Menz M, Moreno-Gonzalez J, Ouzunova M, Charcosset A, Schon CC, Moreau L (2014) Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize. Genetics 198:1717–1734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomez JM, Hernandez JA, Jimenez A, del Rio LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res 31:S11–S18

    Article  CAS  PubMed  Google Scholar 

  • Guan QJ, Takano T, Liu SK (2012) Genetic transformation and analysis of rice OsAPx2 gene in Medicago sativa. PLoS One 7:e41233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide-dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants – the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155

    Article  CAS  PubMed  Google Scholar 

  • Halpin C, Barakate A, Askari BM, Abbott JC, Ryan MD (2001) Enabling technologies for manipulating multiple genes on complex pathways. Plant Mol Biol 47:295–310

    Article  CAS  PubMed  Google Scholar 

  • Han YY, Chen YH, Yin SH, Zhang M, Wang W (2015) Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. J Plant Physiol 173:62–71

    Article  CAS  PubMed  Google Scholar 

  • Hatz S, Lambert JDC, Ogilby PR (2007) Measuring the lifetime of singlet oxygen in a single cell: addressing the issue of cell viability. Photochem Photobiol Sci 6:1106–1116

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Nishimura M (2003) Entering a new era of research on plant peroxisomes. Curr Opin Plant Biol 6:577–582

    Article  CAS  PubMed  Google Scholar 

  • Hemavathi UCP, Akula N, Young KE, Chun SC, Kim DH, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32:321–330

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, de Labrouhe DT, Drevet JR, Roeckel-Drevet P (2011) Transgenic tomatoes showing higher glutathione peroxidase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Sci 180:548–553

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, Delrio LA (1995) Salt-induced oxidative stress in chloroplasts of pea-plants. Plant Sci 105:151–167

    Article  CAS  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F (2001) Antioxidant systems and O (2)(.-)/H(2)O(2) production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyno E, Mary V, Schopfer P, Krieger-Liszkay A (2011) Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta 234:35–45

    Article  CAS  PubMed  Google Scholar 

  • Hideg E, Kalai T, Hideg K, Vass I (1998) Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 37:11405–11411

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T (2006) Look back over the studies of lignin biochemistry. J Wood Sci 52:2–8

    Article  CAS  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savoure A, Jaoua S (2005) Overexpression of Delta (1)-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752

    Article  CAS  Google Scholar 

  • Hu XL, Zhang AY, Zhang JH, Jiang MY (2006) Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell Physiol 47:1484–1495

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Van Aken O, Schwarzlander M, Belt K, Millar AH (2016) The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol 171:1551–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jezek P, Hlavata L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell B 37:2478–2503

    Article  CAS  Google Scholar 

  • Jiang P, Wan ZY, Wang ZX, Li SS, Sun QQ (2013) Dynamic QTL analysis for activity of antioxidant enzymes and malondialdehyde content in wheat seed during germination. Euphytica 190:75–85

    Article  CAS  Google Scholar 

  • Jing J, Jie-yun Z, Ye-yang F, Bo S (2009) Mapping of QTLs for leaf malondialdehyde content associated with stress tolerance in rice. Rice Sci 16:72–74

    Article  Google Scholar 

  • Jing X, Hou P, Lu Y, Deng S, Li N, Zhao R, Sun J, Yang W, Han Y, Lang T, Ding M, Shen X, Chen S (2015) Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast. Front Plant Sci 6

    Google Scholar 

  • Jones MA, Raymond MJ, Yang ZB, Smirnoff N (2007) NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J Exp Bot 58:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Sinha PB, Haniya AMK, Manoharan K (2006a) Differential antioxidative responses of ascorbate-glutathione cycle enzymes and metabolites to chromium stress in green gram (Vigna radiata L. Wilczek) leaves. J Plant Biol 49:440–447

    Article  CAS  Google Scholar 

  • Karuppanapandian T, Sinha PB, Kamarul Haniya A, Premkumar G, Manoharan K (2006b) Aluminium-induced changes in antioxidative enzyme activities, hydrogen peroxide content and cell wall peroxidase activity in green gram (Vigna radiata L. cv. Wilczek) roots. J Plant Biol 33:241–246

    CAS  Google Scholar 

  • Karuppanapandian T, Sinha PB, Premkumar G, Manoharan K (2006c) Chromium toxicity: correlated with increased in degradation of photosynthetic pigments and total soluble protein and increased peroxidase activity in green gram (Vigna radiata L.) seedlings. J Swamy Bot Cl 23:117–122

    Google Scholar 

  • Karuppanapandian T, Saranyadevi AR, Jeyalakshmi K, Manoharan K (2008) Mechanism, control and regulation of leaf senescence in plants. J Plant Biol 35:141–155

    CAS  Google Scholar 

  • Karuppanapandian T, Sinha PB, Haniya AK, Manoharan K (2009) Chromium-induced accumulation of peroxide content, stimulation of antioxidative enzymes and lipid peroxidation in green gram (Vigna radiata L. cv. Wilczek) leaves. Afr J Biotechnol 8:475–479

    CAS  Google Scholar 

  • Karuppanapandian T, Wang HW, Prabakaran N, Jeyalakshmi K, Kwon M, Manoharan K, Kim W (2011) 2,4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49:168–177

    Article  CAS  PubMed  Google Scholar 

  • Kataya AR, Reumann S (2010) Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol. Plant Signal Behav 5:171–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic-nitrogen use efficiency and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.) Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 178:9–18

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11

    Article  CAS  Google Scholar 

  • Kholová J, Tom Hash C, Kocová M, Vadez V (2011) Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought? Environ Exp Bot 71(1):99–106

    Google Scholar 

  • Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Overexpression of sweet potato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867–881

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Ciani S, Schachtman DP (2010) A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol Plant 3:420–427

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konig J, Muthuramalingam M, Dietz KJ (2012) Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Curr Opin Plant Biol 15:261–268

    Article  PubMed  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton PR, Allen RD, Scott Holaday A (2003) Elevated chloroplastic glutathione reductase activities decrease chilling-induced photoinhibition by increasing rates of photochemistry, but not thermal energy dissipation, in transgenic cotton. Funct Plant Biol 30(1):101

    Google Scholar 

  • Kouril R, Lazar D, Lee H, Jo J, Naus J (2003) Moderately elevated temperature eliminates resistance of rice plants with enhanced expression of glutathione reductase to intensive photooxidative stress. Photosynthetica 41:571–578

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25:873–882

    Article  Google Scholar 

  • Lane BG (2002) Oxalate, germins, and higher-plant pathogens. IUBMB Life 53:67–75

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    Article  CAS  PubMed  Google Scholar 

  • Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139:421–434

    CAS  PubMed  Google Scholar 

  • Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta 1840:1574–1582

    Article  CAS  PubMed  Google Scholar 

  • Lim S, Kim YH, Kim SH, Kwon SY, Lee HS, Kim JS, Cho KY, Paek KY, Kwak SS (2007) Enhanced tolerance of transgenic sweet potato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol Breed 19:227–239

    Article  CAS  Google Scholar 

  • Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O(2)(.-), H(2)O(2), and (.)OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z, Jin Z, Chen S, Liu G (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280

    Article  CAS  PubMed  Google Scholar 

  • Logan BA, Monteiro G, Kornyeyev D, Payton P, Allen RD, Holaday AS (2003) Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions. Am J Bot 90:1400–1403

    Article  PubMed  Google Scholar 

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu ZQ, Liu DL, Liu SK (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Sang WG, Ma KP (2008) Differential responses of the activities of antioxidant enzymes to thermal stresses between two invasive eupatorium species in China. J Integr Plant Biol 50:393–401

    Article  CAS  PubMed  Google Scholar 

  • Lu YY, Deng XP, Kwak SS (2010) Overexpression of CuZn superoxide dismutase (CuZn SOD) and ascorbate peroxidase (APX) in transgenic sweet potato enhances tolerance and recovery from drought stress. Afr J Biotechnol 9:8378–8391

    Google Scholar 

  • Luis AR, López-Huertas E (2006) ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol 57:1364–1376

    Google Scholar 

  • Macpherson AN, Telfer A, Barber J, Truscott TG (1993) Direct-detection of singlet oxygen from isolated photosystem-Ii reaction centers. Biochim Biophys Acta 1143:301–309

    Article  CAS  Google Scholar 

  • Marino R, Ponnaiah M, Krajewski P, Frova C, Gianfranceschi L, Pe ME, Sari-Gorla M (2009) Addressing drought tolerance in maize by transcriptional profiling and mapping. Mol Gen Genomics 281:163–179

    Article  CAS  Google Scholar 

  • Martret LB, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melchiorre M, Robert G, Trippi V, Roberto R, Ramiro Lascano H (2009) Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regul 57(1):57–68

    Google Scholar 

  • Mignolet-Spruyt L, Xu E, Idanheimo N, Hoeberichts FA, Muhlenbock P, Brosche M, Van Breusegem F, Kangasjarvi J (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45

    PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19.

    Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Volokita M, Guy M, Tal M (2000) Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 110:42–51

    Article  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol 52:561–591

    Article  CAS  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Nath K, Kumar S, Poudyal RS, Yang YN, Timilsina R, Park YS, Nath J, Chauhan PS, Pant B, Lee CH (2014) Developmental stage-dependent differential gene expression of superoxide dismutase isoenzymes and their localization and physical interaction network in rice (Oryza sativa L.) Genes Genom 36:45–55

    Article  CAS  Google Scholar 

  • Negi NP, Shrivastava DC, Sharma V, Sarin NB (2015) Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco. Plant Cell Rep 34(7):1109–1126

    Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Dutilleul C, De Paepe R, Foyer CH (2004) Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism. J Exp Bot 55:49–57

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. Arabidopsis Book 9:1–32

    Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okmen B, Sigva HO, Gurbuz N, Ulger M, Frary A, Doganlar S (2011) Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum). Turk J Agric For 35:501–514

    CAS  Google Scholar 

  • Palma JM, Corpas FJ, del Rio LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9:2301–2312

    Article  CAS  PubMed  Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Singh J, Achary VMM, Reddy MK (2015) Redox homeostasis via gene families of ascorbate-glutathione pathway. Front Environ Sci 3:25

    Article  Google Scholar 

  • Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.) Mol Gen Genomics 284:121–136

    Article  CAS  Google Scholar 

  • Park AK, Kim IS, Do H, Jeon BW, Lee CW, Roh SJ, Shin SC, Park H, Kim YS, Kim YH, Yoon HS, Lee JH, Kim HW (2016) Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica. Sci Rep 6:33903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson HC, Gerbeth C, Thiru P, Vogtle NF, Knoll M, Shahsafaei A, Samocha KE, Huang CX, Harden MM, Song R, Chen C, Kao J, Shi J, Salmon W, Shaul YD, Stokes MP, Silva JC, Bell GW, MacArthur DG, Ruland J, Meisinger C, Lodish HF (2015) A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling. Proc Natl Acad Sci U S A 112:5679–5688

    Article  CAS  Google Scholar 

  • Peng CL, Ou ZY, Liu N, Lin GZ (2005) Response to high temperature in flag leaves of super high-yielding rice Pei’ai64S/E32andLiangyoupeijiu. Rice Sci 12:179–186

    Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide-a central hub for information flow in plant cells. Aob Plants 2012:pls 014

    Article  CAS  Google Scholar 

  • Prakash C, Mithra SV, Singh PK, Mohapatra T, Singh NK (2016) Unraveling the molecular basis of oxidative stress management in a drought tolerant rice genotype Nagina 22. BMC Genomics 17:774

    Article  PubMed  PubMed Central  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    Article  CAS  PubMed  Google Scholar 

  • Rai GK, Rai NP, Rathaur S, Kumar S, Singh M (2013) Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. Plant Physiol Biochem 69:90–100

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson AG, Geisler DA, Moller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47–60

    Article  CAS  PubMed  Google Scholar 

  • Reisinger S, Schiavon M, Terry N, Pilon-Smits EAH (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial gamma-glutamylcysteine synthetase or glutathione synthetase. Int J Phytoremediation 10:440–454

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Sanz-Fernandez M, Hu J, Sandalio LM (2016) Peroxisomes extend peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a. Plant Physiol 171:1665–1674

    Article  PubMed  PubMed Central  Google Scholar 

  • Roxas VP, Smith RK, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988–991

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins unction as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  PubMed  Google Scholar 

  • Sandalio LM, Romero-Puertas MC (2015) Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Ann Bot 116:475–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep 30:399–406

    Article  CAS  PubMed  Google Scholar 

  • Schopfer P (2001) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Shi R, Sun YH, Li QZ, Heber S, Sederoff R, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144–163

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Shimaoka T, Yokota A, Miyake C (2000) Purification and characterization of chloroplast dehydroascorbate reductase from spinach leaves. Plant Cell Physiol 41:1110–1118

    Article  CAS  PubMed  Google Scholar 

  • Shin SY, Kim MH, Kim YH, Park HM, Yoon HS (2013) Co-expression of monodehydroascorbate reductase and dehydroascorbate reductase from Brassica rapa effectively confers tolerance to freezing-induced oxidative stress. Mol Cell 36:304–315

    Article  CAS  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A 100:14672–14677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc B 355:1455–1464

    Article  CAS  Google Scholar 

  • Spiteller G (2003) The relationship between changes in the cell wall, lipid peroxidation, proliferation, senescence and cell death. Physiol Plant 119:5–18

    Article  CAS  Google Scholar 

  • Stevens R, Buret M, Duffe P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    Article  CAS  Google Scholar 

  • Suh HJ, Kim CS, Jung J (2000) Cytochrome b6/f complex as an indigenous photodynamic generator of singlet oxygen in thylakoid membranes. Photochem Photobiol 71:103–109

    Article  CAS  PubMed  Google Scholar 

  • Sultana S, Khew CY, Morshed MM, Namasivayam P, Napis S, Ho CL (2012) Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice. J Plant Physiol 169:311–318

    Article  CAS  PubMed  Google Scholar 

  • Sumithra K, Jutur PP, Dalton Carmel B, Reddy AR (2006) Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. Plant Growth Regul 50(1):11–22

    Google Scholar 

  • Sun W-H, Duan M, Shu D-F, Yang S, Meng Q-W (2010) Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Rep 29(8):917–926

    Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Takahashi MA, Asada K (1983) Superoxide anion permeability of phospholipid-membranes and chloroplast thylakoids. Arch Biochem Biophys 226:558–566

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS, Lee HS (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. J Plant Physiol 166:1904–1913

    Article  CAS  PubMed  Google Scholar 

  • Teixeira FK, Menezes-Benavente L, Galvao VC, Margis-Pinheiro M (2005) Multigene families encode the major enzymes of antioxidant metabolism in Eucalyptus grandis L. Genet Mol Biol 28:529–538

    Article  CAS  Google Scholar 

  • Teixeira FK, Menezes-Benavente L, Galvao VC, Margis R, Margis-Pinheiro M (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300–314

    Article  CAS  PubMed  Google Scholar 

  • Tepperman JM, Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol 14:501–511

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    Article  CAS  PubMed  Google Scholar 

  • Touati D (1997) Superoxide dismutases in bacteria and pathogen protists. Cold Spring Harb Monogr Arch 34:447–493

    CAS  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi DK, Gill SS, Yadav S, Tuteja N (2013) Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis. Plant Signal Behav 8:e23021

    Article  PubMed  CAS  Google Scholar 

  • Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei 19(4):325–346

    Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Vemanna RS, Chandrashekar BK, Rao HMH, Sathyanarayanagupta SK, Sarangi KS, Nataraja KN, Udayakumar M (2013) A modified multisite gateway cloning strategy for consolidation of genes in plants. Mol Biotechnol 53:129–138

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164(10):1367–1376

    Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:361–380

    Article  CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Wisniewski M, Meilan R, Cui MG, Webb R, Fuchigami L (2005a) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173

    CAS  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005b) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Lam E (2006) Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J 45:884–894

    Article  CAS  PubMed  Google Scholar 

  • Wrzaczek M, Brosche M, Kangasjarvi J (2013) ROS signaling loops – production, perception, regulation. Curr Opin Plant Biol 16(5):575–582

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Sun Y, Zhao Y, Zhang J, Luo L, Li M, Wang J, Yu H, Liu G, Yang L et al (2015) Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Res 25:621–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Jia WS, Zhangl JH (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451

    Article  CAS  PubMed  Google Scholar 

  • Xu WF, Shi WM, Ueda A, Takabe T (2008) Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere 18(4):486–495

    Google Scholar 

  • Xu J, Yang J, Duan XG, Jiang YM, Zhang P (2014) Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol 14:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671

    Article  CAS  PubMed  Google Scholar 

  • Yamada M (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56(417):1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Yin LN, Wang SW, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J 37:21–33

    Article  CAS  PubMed  Google Scholar 

  • You J, Chan ZL (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu T, Li YS, Chen XF, Hu J, Chang X, Zhu YG (2003) Transgenic tobacco plants overexpressing cotton glutathione S-transferase (GST) show enhanced resistance to methyl viologen. J Plant Physiol 160:1305–1311

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZJ, Wang J, Zhang RX, Huang RF (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZG, Zhang Q, Wu JX, Zheng X, Zheng S, Sun XH, Qiu QS, Lu TG (2013) Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in Rice under drought, salt and cold stresses. PLoS One 8:e57472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Apel K, Kim C (2014) Singlet oxygen-mediated and EXECUTERdependent signalling and acclimation of Arabidopsis thaliana exposed to light stress. Philos Trans R Soc Lond Ser B Biol Sci 369:20130227

    Article  CAS  Google Scholar 

  • Zhang Y, Li Z, Peng Y, Wang X, Peng D, Li Y, He X, Zhang X, Ma X, Huang L, Yan Y (2015) Clones of FeSOD, MDHAR, DHAR genes from white clover and gene expression analysis of ROS-scavenging enzymes during abiotic stress and hormone treatments. Molecules 20:20939–20954

    Article  CAS  PubMed  Google Scholar 

  • Zhao FY, Zhang H (2006) Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tissue Org 86:349–358

    Article  CAS  Google Scholar 

  • Zhao J-Z, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21(12):1493–1497

    Google Scholar 

  • Zhou C, Sun Y, Ma Z, Wang J (2015a) Heterologous expression of EsSPDS1 in tobacco plants improves drought tolerance with efficient reactive oxygen species scavenging systems. S Afr J Bot 96:19–28

    Article  CAS  Google Scholar 

  • Zhou C, Sun YJ, Ma ZY, Wang JF (2015b) Overexpression of EsDHAR1 improved tolerance in transgenic tobacco with increased ascorbic acid levels. Oxid Commun 38:677–688

    CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Dugardeyn J, Zhang C, Mühlenbock P, Eastmond PJ, Valcke R, De Coninck B, Öden S, Karampelias M, Cammue BPA et al (2014) The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses. Mol Plant 7:290–310

    Article  CAS  PubMed  Google Scholar 

  • Zolla L, Rinalducci S (2002) Involvement of active oxygen species in degradation of light-harvesting proteins under light stresses. Biochemistry 41:14391–14402

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

PSR acknowledges the Department of Science and Technology, Govt. of India, for the fellowship and research grant through the INSPIRE Faculty Award and Young Scientist Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palakolanu Sudhakar Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chakradhar, T., Mahanty, S., Reddy, R.A., Divya, K., Reddy, P.S., Reddy, M.K. (2017). Biotechnological Perspective of Reactive Oxygen Species (ROS)-Mediated Stress Tolerance in Plants. In: Khan, M., Khan, N. (eds) Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-10-5254-5_3

Download citation

Publish with us

Policies and ethics