Skip to main content

Plants and Carbon Nanotubes (CNTs) Interface: Present Status and Future Prospects

  • Chapter
  • First Online:

Abstract

The unique characteristics of nanomaterials utilizing carbon have drawn great attention and interest since the breakthrough of fullerenes (in 1985), carbon nanotubes (CNTs, in 1991), and graphene (in 2004). This discovery has led to the promotion of developing methods in order to produce it at large industrial scales. Engineered nanomaterials are continuously finding its applications in medical sector, technical devices, environmental purposes, as well as agricultural sector. Despite its wide applications, there is also the unintended release of carbon-based nanostructures into the environment, thereby affecting or posing inimical effect toward the living systems like plants. The researchers are trying to engineer such nanoparticles in a way that it may impose some advanced and beneficial applications in living systems. One of the engineered carbon-based nanomaterials includes carbon nanotubes (CNTs) which can be further classified as single-walled carbon nanotubes (SWCNTs), multiwalled carbon nanotubes (MWCNTs), water-soluble multiwalled carbon nanotubes, functionalized single-walled carbon nanotubes, double-walled carbon nanotubes etc. This chapter, therefore, focuses on all aforementioned types of carbon nanotubes, techniques utilized in synthesis, and current status of research with respect to the impact of carbon nanotubes on plant growth and development addressing relevant knowledge gap.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ajayan PM, Ebbesen TW (1997) Nanometre-size tubes of carbon. Rep Prog Phys 60(10):1025

    Article  CAS  Google Scholar 

  • Ajayan PM, Charlier JC, Rinzler AG (1999) Carbon nanotubes: from macromolecules to nanotechnology. Proc Natl Acad Sci 96(25):14199–14200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Azamian BR, Davis JJ, Coleman KS, Bagshaw CB, Green ML (2002) Bioelectrochemical single-walled carbon nanotubes. J Am Chem Soc 124(43):12664–12665

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi:10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792

    Google Scholar 

  • Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222

    Article  CAS  PubMed  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49(12):3907–3919

    Article  CAS  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F (2012) Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci 262:120–124

    Article  CAS  Google Scholar 

  • Bergmann CP, Machado F (2015) Carbon nanomaterials as adsorbents for environmental and biological applications. Springer, Berlin, pp 1–122

    Google Scholar 

  • Bernholc J, Roland C, Yakobson BI (1997) Nanotubes. Curr Opinion Solid State Mater Sci 2(6):706–715

    Article  CAS  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  PubMed  Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Article  PubMed  Google Scholar 

  • Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y, Kim W et al (2003) Non-covalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci U S A 100(9):4984–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Qiu J, Liu Y, Jiang R, Cai S, Liu Y et al (2015) Carbon nanotubes act as contaminant carriers and translocate within plants. Sci Rep 5:15682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB (2004) Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 126(48):15638–15639

    Article  CAS  PubMed  Google Scholar 

  • Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA et al (2006) Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci U S A 103(50):18882–18886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML (1996) Pure carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett 76(6):971

    Article  CAS  PubMed  Google Scholar 

  • Choudhary N, Hwang S, Choi W (2014) Carbon nanomaterials: a review. In: Handbook of nanomaterials properties. Springer, Berlin/Heidelberg, pp 709–769

    Chapter  Google Scholar 

  • Conway JR, Beaulieu AL, Beaulieu NL, Mazer SJ, Keller AA (2015) Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS Nano 9(12):11737–11749

    Article  CAS  PubMed  Google Scholar 

  • Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35(12):1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Dekker C (1999) Carbon nanotubes as molecular quantum wires. Phys Today 52:22–30

    Article  CAS  Google Scholar 

  • Dervishi E, Li Z, Xu Y, Saini V, Biris AR, Lupu D et al (2009) Carbon nanotubes: synthesis, properties, and applications. Part Sci Technol 27(2):107–125

    Article  CAS  Google Scholar 

  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G et al (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22

    Article  CAS  PubMed  Google Scholar 

  • Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A et al (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebbesen TW (1994) Carbon nanotubes. Annu Rev Mater Sci 24(1):235–264

    Article  CAS  Google Scholar 

  • Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358(6383):220–222

    Article  CAS  Google Scholar 

  • Endo M, Takeuchi K, Igarashi S, Kobori K, Shiraishi M, Kroto HW (1993) The production and structure of pyrolytic carbon nanotubes (PCNTs). J Phys Chem Solids 54(12):1841–1848. doi:10.1016/0022-3697(93)90297-5

    Article  CAS  Google Scholar 

  • Endo M, Strano MS, Ajayan PM (2007) Potential applications of carbon nanotubes. In: Carbon nanotubes. Springer, Berlin/Heidelberg, pp 13–62

    Chapter  Google Scholar 

  • Esakkimuthu T, Sivakumar D, Akila S (2014) Application of nanoparticles in wastewater treatment. Pollut Res 33(03):567–571

    CAS  Google Scholar 

  • Evans DA (1983) Agricultural applications of plant protoplast fusion. Nat Biotechnol 1(3):253–261

    Article  Google Scholar 

  • Flores D, Chacón R, Alvarado L, Schmidt A, Alvarado C, Chaves J (2014) Effect of using two different types of carbon nanotubes for blackberry (Rubus adenotrichos) in vitro plant rooting, growth and histology. Am J Plant Sci 5(24):3510

    Article  CAS  Google Scholar 

  • Ganesh EN (2013) Single walled and multi walled carbon nanotube structure, synthesis and applications. Int J Innov Technol Explor Eng 2(4):311–320

    Google Scholar 

  • Gao Y, Yang T, Jin J (2015) Nanoparticle pollution and associated increasing potential risks on environment and human health: a case study of China. Environ Sci Pollut Res 22(23):19297–19306

    Article  Google Scholar 

  • Ghodake G, Seo YD, Park D, Lee DS (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5(2):157–160

    Article  CAS  Google Scholar 

  • Ghorbanpour M, Hadian J (2015) Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 94:749–759

    Article  CAS  Google Scholar 

  • Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A (2011) Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. J Hazard Mater 197:327–336

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A (2015) MWCNT up take in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat Res 774:49–58

    Article  CAS  PubMed  Google Scholar 

  • Golberg D, Costa PM, Mitome M, Bando Y (2008) Nanotubes in a gradient electric field as revealed by STM TEM technique. Nano Res 1(2):166–175

    Article  CAS  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Grobert N (2007) Carbon nanotubes-becoming clean. Mater Today 10(1):28–35

    Article  CAS  Google Scholar 

  • Haghighi M, da Silva JAT (2014) The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J Crop Sci Biotechnol 17(4):201–208

    Article  Google Scholar 

  • Harrison BS, Atala DA (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28(2):344–353

    Article  CAS  PubMed  Google Scholar 

  • He ZB, Maurice JL, Lee CS, Cojocaru CS, Pribat D (2010) Nickel catalyst faceting in plasma-enhanced direct current chemical vapor deposition of carbon nanofibers. Arab J Sci Eng 35(1C):19

    CAS  Google Scholar 

  • He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013. Article ID 578290, 12 pages doi:10.1155/2013/578290

  • Hong SY, Tobias G, Al-Jamal KT, Ballesteros B, Ali-Boucetta H, Lozano-Perez S et al (2010) Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater 9(6):485–490

    Article  CAS  PubMed  Google Scholar 

  • Hong G, Diao S, Antaris AL, Dai H (2015) Carbon nanomaterials for biological imaging and nano medicinal therapy. Chem Rev 115:10816–10906

    Article  CAS  PubMed  Google Scholar 

  • Hsu WK, Hare JP, Terrones M, Kroto HW, Walton DR, Harris PJ (1995) Condensed-phase nanotubes. Nature 377(6551):687–687

    Article  CAS  Google Scholar 

  • Huang Z, Liu X, Li K, Li D, Luo Y, Li H et al (2007) Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochem Commun 9(4):596–598

    Article  CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(1):1–24

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  • Iijima S, Ajayan PM, Ichihashi T (1992) Growth model for carbon nanotubes. Phys Rev Lett 69(21):3100–3103

    Article  CAS  PubMed  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechnol 4:165

    Article  CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharma Sci 9(6):385

    CAS  Google Scholar 

  • Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen K et al (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Central J 7(1):1

    Article  CAS  Google Scholar 

  • Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Hua Z, Zhao Y, Liu Q, Wang F, Zhang Q (2014) The effect of carbon nanotubes on rice seed germination and root growth. In: International conference on applied biotechnology proceedings (ICAB). Springer, Berlin/Heidelberg, pp 1207–1212

    Google Scholar 

  • José-Yacamán M, Miki-Yoshida M, Rendon L, Santiesteban JG (1993) Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett 62(2):202–204

    Article  Google Scholar 

  • Journet C, Maser WK, Bernier P, Loiseau A, De La Chapelle ML, Lefrant DLS et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758

    Article  CAS  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1):396–414

    Article  CAS  PubMed  Google Scholar 

  • Kam NWS, Jessop TC, Wender PA, Dai H (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126(22):6850–6851

    Article  CAS  Google Scholar 

  • Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102(33):11600–11605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kateb B, Yamamoto V, Alizadeh D, Zhang L, Manohara HM, Bronikowski MJ et al (2010) Multi-walled carbon nanotube (MWCNT) synthesis, preparation, labeling, and functionalization. Immunother Cancer Methods Protoc 651:307–317

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, De Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci U S A 108:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Lee J, Kahng SJ, Son YW, Lee SB, Lee CK et al (2003) Direct observation of localized defect states in semiconductor nanotube junctions. Phys Rev Lett 90(21):216107

    Article  PubMed  CAS  Google Scholar 

  • Lacerda L, Russier J, Pastorin G, Herrero MA, Venturelli E, Dumortier H et al (2012) Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials 33(11):3334–3343

    Article  CAS  PubMed  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS et al (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5(16):7965–7973

    Article  CAS  PubMed  Google Scholar 

  • Landi BJ, Raffaelle RP, Castro SL, Bailey SG (2005) Single-wall carbon nanotube-polymer solar cells. Prog Photovolt Res Appl 13(2):165–172

    Article  CAS  Google Scholar 

  • Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N et al (2012) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227:155–163

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Park J, Kim HR, Lee J, Lee KH (2015) Synthesis of high-quality carbon nanotube fibers by controlling the effects of sulfur on the catalyst agglomeration during the direct spinning process. RSC Adv 5(52):41894–41900

    Google Scholar 

  • Lee J, Lee K, Park SS (2016) Environmentally friendly preparation of nanoparticle-decorated carbon nanotube or graphene hybrid structures and their potential applications. J Mater Sci 51(6):2761–2770

    Article  CAS  Google Scholar 

  • Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Fugetsu B, Su Y, Watari F (2009a) Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 170(2):578–583

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA et al (2009b) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Liu HK, Wang GX, Guo Z, Wang J, Konstantinov K (2006) Nanomaterials for lithium-ion rechargeable batteries. J Nanosci Nanotechnol 6(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–56

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A 105(5):1410–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J et al (2009a) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R et al (2009b) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3(12):3891–3902

    Article  CAS  PubMed  Google Scholar 

  • Lord HL, Zhang X, Musteata FM, Vuckovic D, Pawliszyn J (2011) In vivo solid-phase microextraction for monitoring intravenous concentrations of drugs and metabolites. Nat Protoc 6(6):896–924

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L et al (2012) Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett 12(4):1831–1838

    Article  CAS  PubMed  Google Scholar 

  • McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53(1):625–663

    Article  CAS  PubMed  Google Scholar 

  • Meiners S, Gharyal PK, Schindler M (1991) Permeabilization of the plasmalemma and wall of soybean root cells to macromolecules. Planta 184(4):443–447

    Article  CAS  PubMed  Google Scholar 

  • Millstone JE, Kavulak DF, Woo CH, Holcombe TW, Westling EJ, Briseno AL et al (2010) Synthesis, properties, and electronic applications of size-controlled poly (3-hexylthiophene) nanoparticles. Langmuir 26(16):13056–13061

    Article  CAS  PubMed  Google Scholar 

  • Minibayeva F, Dmitrieva S, Ponomareva A, Ryabovol V (2012) Oxidative stress-induced autophagy in plants: the role of mitochondria. Plant Physiol Biochem 59:11–19

    Article  CAS  PubMed  Google Scholar 

  • Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9(77):3514–3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13(10):4519–4528

    Article  CAS  Google Scholar 

  • Morla S, Rao CR, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Biol Phys Sci 1(2):328

    CAS  Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagarjan R (2008) Nanoparticles: building blocks for nanotechnology. In nanoparticles-synthesis, stablization, passivation, and functionalization. American Chemical Society, pp 2–14

    Google Scholar 

  • Nakayama-Ratchford N, Bangsaruntip S, Sun X, Welsher K, Dai H (2007) Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J Am Chem Soc 129(9):2448–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassar NN (2013) The application of nanoparticles for wastewater remediation. In: Applications of nanomaterials for water quality. Future Science, London

    Google Scholar 

  • Oparka KJ (1991) Uptake and compartmentation of fluorescent probes by plant cells. J Exp Bot 42(5):565–579

    Article  CAS  Google Scholar 

  • Ouyang M, Huang JL, Cheung CL, Lieber CM (2001) Atomically resolved single-walled carbon nanotube intramolecular junctions. Science 291(5501):97–100

    Article  CAS  PubMed  Google Scholar 

  • Ouyang G, Vuckovic D, Pawliszyn J (2011) Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem Rev 111(4):2784–2814

    Article  CAS  PubMed  Google Scholar 

  • Pantarotto D, Briand JP, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 1:16–17

    Article  CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    Article  CAS  PubMed  Google Scholar 

  • Paradise M, Goswami T (2007) Carbon nanotubes-production and industrial applications. Mater Des 28(5):1477–1489

    Article  CAS  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127

    Article  CAS  Google Scholar 

  • Pidgeon N, Harthorn BH, Bryant K, Rogers-Hayden T (2009) Deliberating the risks of nanotechnologies for energy and health applications in the United States and United Kingdom. Nat Nanotechnol 4(2):95–98

    Article  CAS  PubMed  Google Scholar 

  • Pilevar ZT, Mahmoodzadeh H, Eshaghi A (2015) Impact of multi-walled carbon nanotubes on seed germination and seedling growth of Cichorium intybus L. J Biol Environ Sci 6(1):438–445

    Google Scholar 

  • Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84(6):4023–4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed & Nanobiotechnol 8:316–330

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi:10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017b) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) natural polymers for drug delivery. CAB International, Wallingford, pp 53–70

    Google Scholar 

  • Rao DP, Srivastava A (2014) Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur Chem Bull 3(5):502–504

    Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J:1–8

    Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017) Agricultural nanotechnology: concepts, benefits, and risks. In: Prasad R, Kumar M and Kumar V (eds) Nanotechnology. Springer, Singapore, pp 1–17

    Google Scholar 

  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M et al (2010) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5(1):493–499

    Article  PubMed  CAS  Google Scholar 

  • Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y (2013) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3(15):4856–4862

    Article  CAS  Google Scholar 

  • Serag MF, Kaji N, Tokeshi M, Baba Y (2015) Carbon nanotubes and modern nanoagriculture. In: Manzer H, Mohamed H, Firoz M (eds) Nanotechnology and plant sciences. Springer, Berlin, pp 183–201

    Google Scholar 

  • Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97(10):1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10(9):3223–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva J, Fernandes AR, Baptista PV (2014) Application of nanotechnology in drug delivery. In: Sezer AD (ed) Application of nanotechnology in drug delivery, INTECH OPEN SCIENCE pp 127–154

    Google Scholar 

  • Singh S (2010) Nanotechnology and Nanomaterials, Nanomedicine-nanoscale drugs and delivery systems. J Nanosci Nanotechnol 10(12):7906–7918

    Google Scholar 

  • Singh BGP, Baburao C, Pispati V, Pathipati H, Muthy N, Prassana SRV, Rathode BG (2012) Carbon nanotubes. A novel drug delivery system. Int J Res PharmChem 2(2):523–532

    CAS  Google Scholar 

  • Srinivasan C, Saraswathi R (2010) Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99(3):274–275

    CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Strambeanu N, Demetrovici L, Dragos D (2015) Natural sources of nanoparticles. In: Nanoparticles’ promises and risks. Springer, Cham, pp 9–19

    Google Scholar 

  • Su WC, Cheng YS (2014) Carbon nanotubes size classification, characterization and nasal airway deposition. Inhal Toxicol 26(14):843–852

    Article  CAS  PubMed  Google Scholar 

  • Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Tan XM, Fugetsu B (2007) Multi-walled carbon nanotubes interact with cultured rice cells: evidence of a self-defense response. J Biochem Nanotechnol 3(3):285–288

    Article  CAS  Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47(15):3479–3487

    Article  CAS  Google Scholar 

  • Terrones-Maldonado M (1997) Production and characterisation of novel fullerene-related materials: nanotubes, nanofibres and giant fullerenes. Doctoral dissertation, University of Sussex

    Google Scholar 

  • Thess A, Lee R, Nikolaev P, Dai H (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487

    Article  CAS  PubMed  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villasenor LM, Tripathi D, Villegas J (2013) Interaction of carbon nanotubes with mineral nutrients for the promotion of growth of tomato seedlings. Nano Stud 7:87–96

    Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Cendejas LV, Villegas J, Montoya LC, Garcia SB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4(5):577–591

    Article  CAS  Google Scholar 

  • Tománek D, Jorio A, Dresselhaus MS, Dresselhaus G (2008) Introduction to the important and exciting aspects of carbon-nanotube science and technology. In: Carbon nanotubes. Springer, Berlin/Heidelberg, pp 1–12

    Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3(3):1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Shweta, Singh S, Swati S, Rishikesh P, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017a) An integrated overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Singh PK, Prasad SM, Pandey AC, Chauhan DK, Dubey NK (2017b) Nitric oxide alleviates silver nanoparticles (AgNPs)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Shweta, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dube NK, Chauhan DK (2017c) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:70–81

    Article  CAS  PubMed  Google Scholar 

  • Umer A, Naveed S, Ramzan N, Rafique MS (2012) Selection of a suitable method for the synthesis of copper nanoparticles. Nano 7(05):1230005

    Article  CAS  Google Scholar 

  • Usui Y, Haniu H, Tsuruoka S, Saito N (2012) Carbon nanotubes innovate on medical technology. Med Chem 2(1):1–6

    Google Scholar 

  • Vander Wal RL, Berger GM, Ticich TM (2003) Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation. Appl Phy A 77(7):885–889

    Article  CAS  Google Scholar 

  • Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8(15):2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Voleti R (2014) Effect of carbon nanotubes on plant growth and gas exchange using Arabidopsis thaliana. In: Technical proceedings of the 2014 NSTI nanotechnology conference and expo. NSTI Nanotech, Cambridge, p 3

    Google Scholar 

  • Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y et al (2009a) Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett 9(9):3137–3141

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mirkin CA, Park SJ (2009b) Nanofabrication beyond electronics. ACS Nano 3(5):1049–1056

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14(6):1–10

    Article  CAS  Google Scholar 

  • Wierzbicka M, Antosiewicz D (1993) How lead can easily enter the food chain-a study of plant roots. Sci Total Environ 134:423–429

    Article  Google Scholar 

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294

    Article  CAS  PubMed  Google Scholar 

  • Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394(6688):52–55

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M et al (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132

    Article  CAS  PubMed  Google Scholar 

  • Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6(3):562–567

    Article  CAS  PubMed  Google Scholar 

  • Zhai G, Gutowski SM, Walters KS, Yan B, Schnoor JL (2015) Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean. Environ Sci Technol 49(12):7380–7390

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Bai Y, Yan B (2010) Functionalized carbon nanotubes for potential medicinal applications. Drug Discov Today 15(11):428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhang Z, Zhang Y (2011) The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 6(1):555–577

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Durgesh Kumar Tripathi or Devendra Kumar Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shweta et al. (2017). Plants and Carbon Nanotubes (CNTs) Interface: Present Status and Future Prospects. In: Prasad, R., Kumar, V., Kumar, M. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4678-0_16

Download citation

Publish with us

Policies and ethics