Skip to main content

Introduction of Wireless Power Transfer

  • Chapter
  • First Online:
Book cover CMOS Integrated Circuit Design for Wireless Power Transfer

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

Wireless power transfer (WPT) for a broad range of applications is projected to have an exponential growth, with an enormous number of new devices and products to be enabled by this powerful technology. In this chapter, the background and motivations of WPT are introduced first. Then high-level considerations on WPT such as operation frequencies, WPT regulations and WPT standards are reviewed and summarized. In addition, design perspectives on the WPT circuits and systems are also examined. Finally, we present the organization of this book and provide some reading guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92:76–97. doi:10.1109/JPROC.2003.820544

    Article  Google Scholar 

  2. Weiland JD, Liu W, Humayun MS (2005) Retinal prosthesis. Annu Rev Biomed Eng 7:361–401. doi:10.1146/annurev.bioeng.7.060804.100435

    Article  Google Scholar 

  3. Gosselin B (2011) Recent advances in neural recording microsystems. Sensors 11:4572–4597. doi:10.3390/s110504572

    Article  Google Scholar 

  4. Lee H-M, Ghovanloo M (2012) An adaptive reconfigurable active voltage doubler/rectifier for extended-range inductive power transmission. IEEE Trans Circuit Sys II Exp Briefs 59:481–485. doi:10.1109/TCSII.2012.2204840

  5. Radecki A, Chung H, Yoshida Y, Miura N, Shidei T, Ishikuro H, Kuroda T (2011) 6W/25mm2 inductive power transfer for non-contact wafer-level testing. In: IEEE international solid-state circuits conference digest of technical papers (ISSCC), pp 230–232. doi:10.1109/ISSCC.2011.5746297

    Google Scholar 

  6. Chung H, Radecki A, Miura N, Ishikuro H, Kuroda T (2012) A 0.025–0.45 W 60%-efficiency inductive-coupling power transceiver with 5-bit dual-frequency feedforward control for non-contact memory cards. IEEE J Solid State Circ 47:2496–2504. doi:10.1109/JSSC.2012.2206686

    Article  Google Scholar 

  7. Lu Y, Huang M, Cheng L, Ki WH, SP U, Martins RP (2017) A dual-output wireless power transfer system with active rectifier and 3-level operation. IEEE Trans Power Electron 32:927–930. doi:10.1109/TPEL.2016.2601623

    Article  Google Scholar 

  8. (2006) IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C951–2005 (Revision of IEEE Std C951–1991) 1–238. doi:10.1109/IEEESTD.2006.99501

  9. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251. doi:10.1088/0031-9155/41/11/002

    Article  Google Scholar 

  10. Finkenzeller K (2010) RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  11. Merlin R (2007) Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing. Science 317:927–929. doi:10.1126/science.1143884

    Article  Google Scholar 

  12. Kim S, Ho JS, Poon ASY (2013) Midfield wireless powering of subwavelength autonomous devices. Phys Rev Lett 110:203905. doi:10.1103/PhysRevLett.110.203905

    Article  Google Scholar 

  13. Lu Y, Ki W-H (2014) A 13.56 MHz CMOS active rectifier with switched-offset and compensated biasing for biomedical wireless power transfer systems. IEEE Transac Biomed Circuits Syst 8:334–344. doi:10.1109/TBCAS.2013.2270177

    Article  Google Scholar 

  14. Lee H-M, Ghovanloo M (2012) An adaptive reconfigurable active voltage doubler/rectifier for extended-range inductive power transmission. IEEE Transac Circuits Sys II Exp Briefs 59:481–485. doi:10.1109/TCSII.2012.2204840

  15. Lu Y, Li X, Ki W-H, Tsui C-Y, Yue CP (2013) A 13.56MHz fully integrated 1X/2X active rectifier with compensated bias current for inductively powered devices. In: IEEE international solid-state circuits conference digest of technical papers (ISSCC), pp 66–67. doi:10.1109/ISSCC.2013.6487639

    Google Scholar 

  16. Jow UM, Ghovanloo M (2010) Optimization of data coils in a multiband wireless link for neuroprosthetic implantable devices. IEEE Transac Biomed Circuits Syst 4:301–310. doi:10.1109/TBCAS.2010.2049491

    Article  Google Scholar 

  17. Lidow A, de Rooij M (2014, May) Performance evaluation of enhancement-mode GaN transistors in Class-D and Class-E wireless power transfer systems. Bodo Mag:56–60

    Google Scholar 

  18. Riehl PS, Satyamoorthy A, Akram H et al (2015) Wireless power systems for mobile devices supporting inductive and resonant operating modes. IEEE Transac Microwave Theory Tech 63:780–790. doi:10.1109/TMTT.2015.2398413

    Article  Google Scholar 

  19. Hwang JT, Lee DS, Lee JH et al (2016) An all-in-one (Qi, PMA and A4WP) 2.5W fully integrated wireless battery charger IC for wearable applications. In: IEEE international solid-state circuits conference digest of technical papers (ISSCC), pp 378–380

    Google Scholar 

  20. Meng M, Kiani M (2016) Design and optimization of ultrasonic wireless power transmission links for millimeter-sized biomedical implants. IEEE Transac Biomed Circuits Syst:1–10. doi:10.1109/TBCAS.2016.2583783

  21. Ulrich WD (1974) Ultrasound dosage for nontherapeutic use on human beings – extrapolations from a literature survey. IEEE Trans Biomed Eng BME-21:48–51. doi:10.1109/TBME.1974.324362

    Article  Google Scholar 

  22. van Schuylenbergh K, Puers R (2009) Inductive powering. Springer, Dordrecht

    Book  Google Scholar 

  23. Magnetic resonance and magnetic induction – what is the best choice for my application? https://www.wirelesspowerconsortium.com/data/downloadables/1/2/4/6/magnetic-resonance-or-magnetic-induction.pdf. Accessed 19 Oct 2016

  24. Branscombe M (2013) Wireless power: could Cota make it long-distance and mainstream? http://www.qiwireless.com/wireless-power-cota-make-long-distance-mainstream. Accessed 19 Oct 2016

  25. Li X, Lu Y, Tsui C-Y, Ki W-H (2014) An adaptive wireless powering and data telemetry system for optic nerve stimulation. In: 2014 I.E. international symposium on circuits and systems (ISCAS), pp 1404–1407. doi:10.1109/ISCAS.2014.6865407

    Chapter  Google Scholar 

  26. O’Driscoll S, Poon ASY, Meng TH (2009) A mm-sized implantable power receiver with adaptive link compensation. In: IEEE international solid-state circuits conference digest of technical papers (ISSCC), pp 294–295. doi:10.1109/ISSCC.2009.4977424

    Google Scholar 

  27. Raju S, Li X, Lu Y et al (2014) Efficient wireless power transmission technology based on above-CMOS integrated (ACI) high quality inductors. In: IEEE international electron devices meeting (IEDM), pp 12.4.1–12.4.4. doi:10.1109/IEDM.2014.7047038

    Google Scholar 

  28. Zargham M, Gulak PG (2015) Fully integrated in-chip coil in 0.13 CMOS for wireless power transfer through biological media. IEEE Transac Biomed Circuits Syst 9:259–271. doi:10.1109/TBCAS.2014.2328318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lu, Y., Ki, WH. (2018). Introduction of Wireless Power Transfer. In: CMOS Integrated Circuit Design for Wireless Power Transfer. Analog Circuits and Signal Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-2615-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2615-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2614-0

  • Online ISBN: 978-981-10-2615-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics