Skip to main content

Image Analysis of Hemispherical Photographs, Algorithms and Calculations

  • Chapter
  • First Online:
Hemispherical Photography in Forest Science: Theory, Methods, Applications

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 28))

Abstract

This chapter is a logical continuation of the chapter on acquisition of hemispherical photographs (HP) in forest environments (Fournier et al. in Hemispherical photography in forest science: theory, methods, applications, Springer, Berlin, 2017), and describes the analysis of hemispherical or ‘fisheye’ canopy photographs, including the calculation of canopy solar radiation and structure. The workflow for digital images proceeds through several steps, from image input to the calculation of canopy structure and solar radiation variables:

  • Image input includes image selection and quality control, while image processing consists of editing and contrast enhancement, registration with coordinate systems, and the creation of configuration or parameter files.

  • Image classification is a critical step in the HP workflow . In the past, pixels were classified as either canopy or sky using manual selection of a threshold grayscale value. More recently, automated methods have become available for classifying pixels and have greatly increased the efficiency and productivity of HP workflow. We discuss some of these new methods for producing a binary data set from the grayscale information in HP.

  • Calculations and output of results from HP requires the definition of sampling grids or circular transects , along which gap fractions and gap sizes are measured as a function of zenith and azimuth directions. Quantitative solar and canopy structure indices, such as site factors and leaf area index (LAI), are output to spreadsheets or text files.

  • Conclusions. This final step includes the interpretation of the results, which are generally output to spreadsheets, databases and models.

In addition to discussing the steps in the workflow, this chapter also addresses some issues for modelling solar radiation that typically have been neglected, such as steep slopes , and briefly discusses alternative parameters and approaches for quantifying canopy structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abutaleb AS (1989) Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput Vision Graph Image Proc 47:22–32

    Article  Google Scholar 

  • Alexandre DY (1982) Pénétration de la lumière au niveau du sous-bois d’une forêt dense tropicale. Ann Sci For 39:419–438

    Article  Google Scholar 

  • Anderson MC (1964) Studies of the woodland light climate. I. The photographic computation of light conditions. J Ecol 52:27–41

    Article  Google Scholar 

  • Anderson MC (1981) The geometry of leaf distribution in some South-Eastern Australian forests. Agric For Meteorol 25:195–205

    Article  Google Scholar 

  • Anderson MC, Miller EW (1974) Forest cover as a solar camera: penumbral effects in plant canopies. J Appl Ecol 11:691–697

    Article  Google Scholar 

  • Barclay HJ, Trofymow JA, Leach RI (2000) Assessing bias from boles in calculating leaf area index in immature Douglas-fir with the LI-COR canopy analyzer. Agric For Meteorol 100:255–260

    Article  Google Scholar 

  • Baret F, Andrieu B, Folmer JC, Hanocq JF, Sarrouy C (1993) Gap fraction measurement from hemispherical infrared photography and its use to evaluate PAR interception efficiency. In: Varlet-Grancher C, Bonhomme R, Sinoquet H (eds) Crop structure and light microclimate. Characterization and applications. INRA, Paris. p 359–372

    Google Scholar 

  • Baret F, de Solan B, Lopez-Lozano R, Ma Kai, Weiss M (2010) GAI estimates of row crops from downward looking digital photos taken perpendicular to rows at 57.5° zenith angle: theoretical considerations based on 3D architecture models and application to wheat crops. Agric For Meteorol 150:1393–1401

    Article  Google Scholar 

  • Becker P, Erhart DW, Smith AP (1989) Analysis of forest light environments. Part I. Computerized estimation of solar radiation from hemispherical canopy photographs. Agric For Meteorol 44:217–232

    Article  Google Scholar 

  • Blennow K (1995) Sky view factors from high-resolution scanned fish-eye lens photographic negatives. J Atmos Ocean Tech 12:1357–1362

    Article  Google Scholar 

  • Bonhomme R (1973) Analyse de la surface des taches de soleil, de l’indice foliaire et de l’inclinaison moyenne des feuilles à l’aide de photographies hémisphériques. In: Slatyer RO (ed) Plant response to climatic factors: Proceedings of Uppsala symposium. UNESCO, Paris, pp 369–376

    Google Scholar 

  • Bonhomme R, Chartier P (1972) The interpretation and automatic measurement of hemispherical photographs to obtain sunlit leaf area and gap frequency. Israel J Agr Res 22:53–61

    Google Scholar 

  • Bonhomme R, Varlet-Grancher C, Chartier P (1974) The use of hemispherical photographs for determining the leaf area index of young crops. Photosynthetica 8:299–301

    Google Scholar 

  • Bréda NJJ (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54(392):2403–2417

    Article  PubMed  Google Scholar 

  • Campbell GS (1986) Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agric For Meteorol 36:317–321

    Article  Google Scholar 

  • Campbell GS (1990) Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agric For Meteorol 49:173–176

    Article  Google Scholar 

  • Campbell GS, Norman JM (1989) The description and measurement of plant canopy structure. In: Russell G, Marshall B, Jarvis PG (eds) Plant canopies: their growth, form and function. Cambridge University Press, Cambridge, pp 1–19

    Chapter  Google Scholar 

  • Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Capers RS, Chazdon RL (2004) Rapid assessment of understory light availability in a wet tropical forest. Agric For Meteorol 123:177–185

    Article  Google Scholar 

  • Cescatti A (2007) Indirect estimates of canopy gap fractions based on the linear conversion of hemispherical photographs. Methodology and comparison with standard thresholding techniques. Agric For Meteorol 143:1–12

    Article  Google Scholar 

  • Chapman L (2007) Potential applications of near infra-red hemispherical imagery in forest environments. Agric For Meteorol 143:151–156

    Article  Google Scholar 

  • Chazdon RL (1988) Sunflecks and their importance to forest understory plants. Adv Ecol Res 18:1–63

    Article  Google Scholar 

  • Chazdon RL, Field CB (1987) Photographic estimation of photosynthetically active radiation: evaluation of a computerized technique. Oecologia 73:525–532

    Article  CAS  PubMed  Google Scholar 

  • Chen JM (1996) Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric For Meteorol 80:135–163

    Article  Google Scholar 

  • Chen JM, Black TA (1991) Measuring leaf area index of plant canopies with branch architecture. Agric For Meteorol 57:1–12

    Article  Google Scholar 

  • Chen JM, Black TA, Adams RS (1991) Evaluation of hemispherical photography for determining leaf area index and geometry of a forest stand. Agric For Meteorol 56:129–143

    Article  CAS  Google Scholar 

  • Chen JM, Cihlar J (1995) Plant canopy gap-size theory for improving optical measurements of leaf-area index. Appl Opt 34:6211–6222

    Article  CAS  PubMed  Google Scholar 

  • Clark JA, Follin GM (1988) A simple “equal area” calibration for fisheye photography. Agric For Meteorol 44:19–25

    Article  Google Scholar 

  • Clearwater MJ, Nifinluri T, van Gardingen PR (1999) Forest fire smoke and a test of hemispherical photography for predicting understorey light in Bornean tropical rain forest. Agric For Meteorol 97:129–139

    Article  Google Scholar 

  • Côté J-F, Fournier RA, Egli R (2011) An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR. Environ Modell Softw 26:761–777

    Article  Google Scholar 

  • Courbaud B, de Coligny F, Cordonnier T (2003) Simulating radiation distribution in a heterogeneous Norway spruce forest on a slope. Agric For Meteorol 116:1–8

    Article  Google Scholar 

  • Dogniaux R (1975) Variations géographiques et climatiques des expositions énergétiques solaires sur des surfaces réceptrices horizontales et verticales. Miscellanea Série B, No. 38, Institut Royal Météorologique de Belgique, 12 pp

    Google Scholar 

  • Dubayah R, Rich PM (1995) Topographic solar radiation models for GIS. Int J Geogr Inf Syst 9:405–419

    Article  Google Scholar 

  • Duursma RA, Marshall JD, Robinson AP (2003) Leaf area index inferred from solar beam transmission in mixed conifer forests on complex terrain. Agric For Meteorol 118:221–236

    Article  Google Scholar 

  • Endler JA (1993) The color of light in forests and its implications. Ecol Monogr 63:1–27

    Article  Google Scholar 

  • Englund SR, O’Brien JJ, Clark DB (2000) Evaluation of digital and film hemispherical photography and spherical densitometry for measuring forest light environments. Can J For Res 30:1999–2005

    Article  Google Scholar 

  • Eschenbach C, Kappen L (1996) Leaf area index determination in an alder forest: a comparison of three methods. J Exp Bot 47:1457–1462

    Article  CAS  Google Scholar 

  • España E, Baret F, Weiss M (2008) Slope correction for LAI estimation from gap fraction measurements. Agric For Meteorol 148:1553–1562

    Article  Google Scholar 

  • Flerchinger GN, Qiang Yu (2007) Simplified expressions for radiation scattering in canopies with ellipsoidal leaf angle distributions. Agric For Meteorol 144:230–235

    Article  Google Scholar 

  • Fournier RA, Landry R, August NM, Fedosejevs G, Gauthier RP (1996) Modelling light obstruction in three conifer forests using hemispherical photography and fine tree architecture. Agric For Meteorol 82:47–72

    Article  Google Scholar 

  • Fournier RA, Rich PM, Landry R (1997) Hierarchical characterization of canopy architecture for boreal forest. J Geophys Res 102(D24):29445–29454

    Article  Google Scholar 

  • Fournier RA, Mailly D, Walter J-MN, Jonckheere IGC (2017) Acquiring hemispherical photographs in forest environments: from planning to archiving photographs. In: Fournier RA, Hall RJ (eds) Hemispherical photography in forest science: theory, methods, applications. Springer, Berlin

    Chapter  Google Scholar 

  • Fraser CS (1997) Digital camera self-calibration. ISPRS Journal. ISPRS J Photogramm 52:149–159

    Article  Google Scholar 

  • Frazer GW, Fournier RA, Leblanc SG, Walter J-MN (2017) View angle-dependent clumping indices for indirect LAI estimation. In: Fournier RA, Hall RJ (eds) Hemispherical photography in forest science: theory, methods, applications. Springer, Berlin

    Google Scholar 

  • Frazer GW, Fournier RA, Trofymow JA, Hall RJ (2001) A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agric For Meteorol 109:249–263

    Article  Google Scholar 

  • Frazer GW, Trofymow JA, Lertzman KP (1997) A method for estimating canopy openness, effective leaf area index, and photosynthetically active photon flux density using hemispherical photography and computerized image analysis techniques. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC. Information Report BC-X-373. 73 pp

    Google Scholar 

  • Gastellu-Etchegorry J-P, Martin E, Gascon F (2004) DART: A 3D model for simulating satellite images and surface radiation budget. Int J Remote Sens 25:75–96

    Article  Google Scholar 

  • Gates DM (1980) Biophysical ecology. Springer, Berlin

    Book  Google Scholar 

  • Goel NS, Strebel DE (1984) Simple beta distribution representation of leaf orientation in vegetation canopies. Agron J 76:800–802

    Article  Google Scholar 

  • Gonsamo A, Pellikka P (2008) Methodology comparison for slope correction in canopy leaf area index estimation using hemispherical photography. For Ecol Manag 256:749–759

    Article  Google Scholar 

  • Gonsamo A, Pellikka P (2009) The computation of foliage clumping index using hemispherical photography. Agric For Meteorol 149:1781–1787

    Article  Google Scholar 

  • Gonsamo A, Walter J-MN, Pellikka P (2010) Sampling gap fraction and size for estimating leaf area and clumping indices from hemispherical photographs. Can J For Res 40:1588–1603

    Article  Google Scholar 

  • Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Grant RH, Heisler GM, Gao W (1996) Photosynthetically-active radiation: ssky radiance distributions under clear and overcast skies. Agric For Meteorol 82:267–292

    Article  Google Scholar 

  • Hale SE, Edwards C (2002) Comparison of film and digital hemispherical photography across a wide range of canopy densities. Agric For Meteorol 112:51–56

    Article  Google Scholar 

  • Hall RJ, Côté J-F, Mailly D, Fournier RA (2017) Comparison of software analysis tools designed for hemispherical photography (Chapter 7). In: Fournier RA, Hall RJ (eds) Hemispherical photography in forest science: theory, methods, applications. Springer, Berlin

    Google Scholar 

  • Hartigan JA, Wong MA (1979) Algorithm AS 136: A k-means clustering algorithm. App Stat 28(1):100–108

    Google Scholar 

  • Herbert TJ (1987) Area projections of fisheye photographic lenses. Agric For Meteorol 39:215–223

    Google Scholar 

  • Holmes MG, Farmer AM, Bartley MR (1983) Perception of shade [and discussion]. Philos T R Soc B 303:503–521

    Article  Google Scholar 

  • Hutchison BA, Matt DR (1976) Beam enrichment of diffuse radiation in a deciduous forest. Agr Meteorol 17:93–110

    Article  Google Scholar 

  • Inoue A, Yamamoto K, Mizoue N (2011) Comparison of automatic and interactive thresholding of hemispherical photography. J For Sci-Jpn 57:78–87

    Google Scholar 

  • Inoue A, Yamamoto K, Mizoue N, Kawahara Y (2004) Effects of image quality, size and camera type on forest light environment estimates using digital hemispherical photography. Agric For Meteorol 126:89–97

    Article  Google Scholar 

  • Ishida M (2004) Automatic thresholding for digital hemispherical photography. Can J For Res 34:2208–2216. Software: RGBFisheye.exe available at: http://www1.gifu-u.ac.jp/~ishidam/RGBFisheye.htm

  • Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index (LAI) determination. Part I. Theories, sensors and hemispherical photography. Agric For Meteorol 121:19–35

    Article  Google Scholar 

  • Jonckheere I, Nackaerts K, Muys B, Coppin P (2005) Assessment of automatic gap fraction estimation of forests from digital hemispherical photography. Agric For Meteorol 132:96–114

    Article  Google Scholar 

  • Jonckheere IGC, Muys B, Coppin B (2006a) Derivative analysis for in situ high dynamic range hemispherical photography and its application in forest stands. IEEE Geosci Remote S 2:296–300

    Article  Google Scholar 

  • Jonckheere I, Nackaerts K, Muys B, van Aardt J, Coppin P (2006b) A fractal dimension-based modelling approach for studying the effect of leaf distribution on LAI retrieval in forest canopies. Ecol Model 197:179–195

    Article  Google Scholar 

  • Jupp DLB, Anderson MC, Adomeit EM, Witts SJ (1980) PISCES—A computer program for analysing hemispherical canopy photographs. CSIRO, Institute of Earth Resources, Division of Land Use Research. Technical Memorandum 80/23. 22 pp

    Google Scholar 

  • Kapur J, Sahoo P, Wong A (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vision Graph 29:273–285

    Article  Google Scholar 

  • Kucharik CJ, Norman JM, Gower ST (1998a) Measurements of branch area and adjusting leaf area index indirect measurements. Agric For Meteorol 91:69–88

    Article  Google Scholar 

  • Kucharik CJ, Norman JM, Gower ST (1998b) Measurements of leaf orientation, light distribution and sunlit leaf area in a boreal aspen forest. Agric For Meteorol 91:127–148

    Article  Google Scholar 

  • Kucharik CJ, Norman JM, Gower ST (1999) Characterization of radiation regimes in nonrandom forest canopies: theory, measurements, and a simplified modeling approach. Tree Physiol 19:695–706

    Article  PubMed  Google Scholar 

  • Kucharik CJ, Norman JM, Murdock LM, Gower ST (1997) Characterizing canopy non-randomness with a multiband vegetation imager (MVI). J Geophys Res 102(D24):29455–29473

    Article  Google Scholar 

  • Lang ARG (1986) Leaf area and average leaf angle from transmission of direct sunlight. Aust J Bot 34:349–355

    Article  Google Scholar 

  • Lang ARG (1987) Simplified estimate of leaf area index from transmittance of the sun’s beam. Agric For Meteorol 41:179–186

    Article  Google Scholar 

  • Lang ARG, Xiang Y (1986) Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies. Agric For Meteorol 37:229–243

    Article  Google Scholar 

  • Lang M, Kuusk A, Mõttus M, Rautiainen M, Nilson T (2010) Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. Agric For Meteorol 150:20–29

    Article  Google Scholar 

  • Leblanc SG (2006) Digital Hemispherical Photography (DHP) Manual, version 1.0. Natural Resources Canada, Canada Centre for Remote Sensing, Ottawa

    Google Scholar 

  • Leblanc SG (2008) DHP-TRACWin Manual. Natural Resources Canada, Saint-Hubert, Quebec, Canada

    Google Scholar 

  • Leblanc SG, Chen JM, Fernandes R, Deering DW, Conley A (2005) Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric For Meteorol 129:187–207

    Article  Google Scholar 

  • Leblanc SG, Fernandes R, Chen JM (2002) Recent advancements in optical field leaf area index, foliage heterogeneity, and foliage angular distribution measurements. In: IGARSS 2002, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 24–28 June 2002, Toronto, Ontario. CD-ROM. IEEE, Piscataway, New Jersey. 5:2902–2904

    Google Scholar 

  • Leblanc SG, Fournier RA (2017) Measurement of forest structure with hemispherical photography. In: Fournier RA, Hall RJ (eds) Hemispherical photography in forest science: theory, methods, applications. Springer, Berlin

    Google Scholar 

  • Lee DW (1987) The spectral distribution of radiation in two neotropical rainforests. Biotropica 19:161–166

    Article  Google Scholar 

  • Lee DW, Graham R (1986) Leaf optical properties of rainforest sun and extreme shade plants. Am J Bot 73:1100–1108

    Article  Google Scholar 

  • Macfarlane C (2011) Classification method of mixed pixels does not affect canopy metrics from digital images of forest overstorey. Agric For Meteorol 151:833–840

    Article  Google Scholar 

  • MacFarlane C, Coote M, White DA, Adams MA (2000) Photographic exposure affects indirect estimation of leaf area in plantations of Eucalyptus globulus Labill. Agric For Meteorol 100:155–168

    Article  Google Scholar 

  • Macfarlane C, Arndt SK, Livesley SJ, Edgar AC, White DA, Adams MA, Eamus D (2007a) Estimation of leaf area index in eucalypt forest with vertical foliage, using cover and fullframe fisheye photography. For Ecol Manag 242:756–763

    Article  Google Scholar 

  • Macfarlane C, Hoffman M, Eamus D, Kerp N, Higginson S, McMurtrie R, Adams M (2007b) Estimation of leaf area index in eucalypt forest using digital photography. Agric For Meteorol 143:176–188

    Article  Google Scholar 

  • Macfarlane C, Ogden GN (2012) Automated estimation of foliage cover in forest understorey from digital nadir images. Methods Ecol Evol 3:405–415

    Article  Google Scholar 

  • Martens SN, Ustin SL, Rousseau RA (1993) Estimation of tree canopy leaf area index by gap fraction analysis. For Ecol Manag 61:91–108

    Article  Google Scholar 

  • Messier C, Honer TW, Kimmins JP (1989) Photosynthetic photon flux density, red:far-red ratio, and minimum light requirement for survival of Gaultheria shallon in western red cedar-western hemlock stands in coastal British Columbia. Can J For Res 19:1470–1477

    Article  Google Scholar 

  • Miller EE, Norman JM (1971) A sunfleck theory for plant canopies II. Penumbra effects: Intensity distributions along sunfleck segments. Agron J 63:739–743

    Article  Google Scholar 

  • Miller JB (1967) A formula for average foliage density. Aust J Bot 15:141–144

    Article  Google Scholar 

  • Mitchell PL, Whitmore TC (1993) Use of hemispherical photographs in forest ecology. Oxford Forestry Institute, Department of Plant Sciences, University of Oxford. OFI Occasional Paper No. 44. 39 pp

    Google Scholar 

  • Moon P, Spencer DE (1942) Illumination from a non-uniform sky. Trans Illum Engng Soc 37:707–726

    Google Scholar 

  • Nackaerts K, Wagendorp T, Coppin P, Muys B, Gombeer R (1999) A correction of indirect LAI measurements for a non-random distribution of needles on shoots. In: Proceedings of ISSSR, Systems and sensors for the new millennium, 31 October–4 November, Las Vegas, Nevada, 4 pp

    Google Scholar 

  • Niblack W (1986) An introduction to image processing. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Nobis M, Hunziker U (2005) Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agric For Meteorol 128:243–250

    Article  Google Scholar 

  • Norman JM, Campbell GS (1989) Canopy structure. In: Pearcy RW, Ehleringer J, Mooney HA, Rundel PW (eds) Physiological plant ecology: field methods and instrumentation. Chapman & Hall, London, pp 301–325

    Chapter  Google Scholar 

  • Olivo JC (1994) Automatic threshold selection using the wavelet transform. Comput Vis Graph Image Process 56:205–218

    Google Scholar 

  • Olsson L, Carlsson K, Grip H, Perttu K (1982) Evaluation of forest-canopy photographs with diode-array scanner OSIRIS. Can J For Res 12:822–828

    Article  Google Scholar 

  • Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Phys 41:421–453

    Article  CAS  Google Scholar 

  • Pekin BK, Macfarlane C (2009) Measurement of crown cover and leaf area index using digital cover photography and its application to remote sensing. Remote Sens 1:1298–1320

    Article  Google Scholar 

  • Perry SG, Fraser AB, Thomson DW, Norman JM (1988) Indirect sensing of plant canopy structure with simple radiation measurements. Agric For Meteorol 42:255–278

    Article  Google Scholar 

  • Pinty B, Gobron N, Widlowski J-L, Lavergne T, Verstraete MM (2004) Synergy between 1-D and 3-D radiation transfer models to retrieve vegetation canopy properties from remote sensing data. J Geophys Res 109:D21205. doi:10.1029/2004JD005214

    Google Scholar 

  • Planchais I, Pontailler J-Y (1999) Validity of leaf areas and angles estimated in a beech forest from analysis of gap frequencies, using hemispherical photographs and a plant canopy analyzer. Ann For Sci 56:1–10

    Article  Google Scholar 

  • Plotnick RE, Gardner RH, Hargrove WW, Prestegaard K, Perlmutter M (1996) Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys Rev E 53:5461–5468

    Article  CAS  Google Scholar 

  • Poorter L, Oberbauer SF, Clark DB (1995) Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. Am J Bot 82:1257–1263

    Article  Google Scholar 

  • Pueschel P, Buddenbaum H, Hill J (2012) An efficient approach to standardizing the processing of hemispherical images for the estimation of forest structural attributes. Agric For Meteorol 160:1–13

    Article  Google Scholar 

  • Rich PM (1989) A manual for analysis of hemispherical canopy photography. Los Alamos National Laboratory Report LA-11732-M, Los Alamos, USA. (http://www.creeksidescience.com/files/rich_et_al_1989_canopy_manual.pdf)

  • Rich PM (1990) Characterizing plant canopies with hemispherical photographs. In: Goel NS, Norman JM (eds) Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions. Remote Sens Rev 5:13–29

    Google Scholar 

  • Rich PM, Wood J, Vieglais DA, Burek K, Webb N (1999) HemiView user manual. Delta-T Devices Ltd, Cambridge, UK, 79 pp

    Google Scholar 

  • Ridler TW, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8:630–632

    Article  Google Scholar 

  • Ross J (1981) The radiation regime and architecture of plant stands. Junk publishers, The Hague, Dr W

    Book  Google Scholar 

  • Russ J (2002) The image processing handbook, 4th edn. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Ryu Y, Sonnentag O, Nilson T, Vargas R, Kobayashi H, Wenk R, Baldocchi DD (2010) How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach. Agric For Meteorol 150:63–76

    Article  Google Scholar 

  • Schleppi P, Conedera M, Sedivy I, Thimonier A (2007) Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agric For Meteorol 144:236–242

    Article  Google Scholar 

  • Schleppi P, Paquette A (2017) Solar radiation in forests: theory for hemispherical photography. In: Fournier RA, Hall RJ (eds) Hemispherical photography in forest science: theory, methods, applications. Springer, Berlin

    Google Scholar 

  • Schneider D, Schwalbe E, Maas H-G (2009) Validation of geometric models for fisheye lenses. ISPRS J Photogramm 64:259–266

    Article  Google Scholar 

  • Schwalbe E, Maas H-G, Kenter M, Wagner S (2006) Profile based sub-pixel-classification of hemispherical images for solar radiation analysis in forest ecosystems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36 (Part 7):(on CD-ROM)

    Google Scholar 

  • Sinoquet H, Pincebourde S, Adam B, Donès N, Phattaralerphong J, Combes D, Ploquin S, Sangsing K, Kasemsap P. Thanisawanyangkura S, Groussier-Bout G, Casas J (2009) 3-D maps of tree canopy geometries at leaf scale. Ecology 90:283–1283

    Google Scholar 

  • Smith H (1982) Light quality, photoperception, and plant strategy. Annu Rev Plant Phys 33:481–518

    Article  CAS  Google Scholar 

  • Smith WK, Knapp AK, Reiners WA (1989) Penumbral effects on sunlight penetration in plant communities. Ecology 70:1603–1609

    Article  Google Scholar 

  • Steven MD, Unsworth MH (1979) The diffuse solar irradiance of slopes under cloudless skies. Q J Roy Meteor Soc 105:593–602

    Article  Google Scholar 

  • Strachan IB, McCaughey JH (1996) Spatial and vertical leaf area index of a deciduous forest resolved using the LAI-2000 plant canopy analyzer. For Sci 42:176–181

    Google Scholar 

  • ter Steege H (1997) Winphot 5: a programme to analyze vegetation indices, light, and light quality from hemispherical photographs. Tropenbos-Guyana Programme and Utrecht University, Utrecht, 52 pp

    Google Scholar 

  • Tsai W (1985) Moment-preserving thresholding: a new approach. Comput Vision Graph 29:377–393

    Article  Google Scholar 

  • Ustin SL, Woodward RA, Barbour MG, Hatfield JL (1984) Relationships between sunfleck dynamics and red fir seedling distribution. Ecology 65:1420–1428

    Article  Google Scholar 

  • van Gardingen PR, Jackson GE, Hernandez-Daumas S, Russell G, Sharp L (1999) Leaf area index estimates obtained for clumped canopies using hemispherical photography. Agric For Meteorol 94:243–257

    Article  Google Scholar 

  • Varlet-Grancher C, Bonhomme R, Sinoquet H (eds) (1993) Crop structure and light microclimate: characterization and applications. INRA Editions, Paris

    Google Scholar 

  • Verhoeven GJJ (2010) It’s all about the format—unleashing the power of RAW aerial photography. Int J Remote Sens 31:2009–2042

    Article  Google Scholar 

  • Wagner S (1998) Calibration of grey values of hemispherical photographs for image analysis. Agric For Meteorol 90:103–117

    Article  Google Scholar 

  • Wagner S (2001) Relative radiance measurements and zenith angle dependent segmentation in hemispherical photography. Agric For Meteorol 10:103–115

    Article  Google Scholar 

  • Wagner S, Hagemeier M (2006) Method of segmentation affects leaf inclination angle estimation in hemispherical photography. Agric For Meteorol 139:12–24

    Article  Google Scholar 

  • Walter J-MN, Fournier RA, Soudani K, Meyer E (2003) Integrating clumping effects in forest canopy structure: an assessment through hemispherical photographs. Can J Remote Sens 29:388–410

    Article  Google Scholar 

  • Walter J-MN, Torquebiau EF (2000) The computation of forest leaf area index on slope using fish-eye sensors. C R Acad Sci III 323:801–813

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Tenhunen J, Schmidt M, Otieno D, Kolcun O, Droesler M (2005) Diffuse PAR irradiance under clear skies in complex alpine terrain. Agric For Meteorol 128:1–15

    Article  Google Scholar 

  • Wang W-M, Li Z-L, Su H-B (2007) Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agric For Meteorol 143:106–122

    Article  Google Scholar 

  • Wang YS, Miller DR, Welles JM, Heisler GM (1992) Spatial variability of canopy foliage in an oak forest estimated with fisheye sensors. For Sci 38:854–865

    Google Scholar 

  • Warren Wilson J (1963) Estimation of foliage denseness and foliage angle by inclined point quadrats. Aust J Bot 11:95–105

    Article  Google Scholar 

  • Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agric For Meteorol 121:37–53

    Article  Google Scholar 

  • Welles JM, Norman JM (1991) Instrument for indirect measurement of canopy architecture. Agron J 83:818–825

    Article  Google Scholar 

  • Widlowski J-L, Pinty B, Lavergne T, Verstraete MM, Gobron N (2007a) Horizontal radiation transport in 3-D forest canopies at multiple spatial resolutions: simulated impact on canopy absorption. Remote Sens Environ 103:379–397

    Article  Google Scholar 

  • Widlowski J-L, Robustelli M, Disney M, Gastellu-Etchegorry J-P, Lavergne T, Lewis P, North PRJ, Pinty B, Thompson R, Verstraete MM (2007b) The RAMI On-line Model Checker (ROMC): a web-based benchmarking facility for canopy reflectance models. Remote Sens Environ 112:1144–1150

    Article  Google Scholar 

  • Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA (1995) Color indices for weed identification under various soil, residue, and lighting conditions. T ASAE 38:259–269

    Article  Google Scholar 

  • Zhang Y, Chen JM, Miller JR (2005) Determining digital hemispherical photography exposure for leaf area index estimation. Agric For Meteorol 133:166–181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge G. C. Jonckheere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jonckheere, I.G.C., Macfarlane, C., Walter, JM.N. (2017). Image Analysis of Hemispherical Photographs, Algorithms and Calculations. In: Fournier, R., Hall, R. (eds) Hemispherical Photography in Forest Science: Theory, Methods, Applications. Managing Forest Ecosystems, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1098-3_5

Download citation

Publish with us

Policies and ethics