Skip to main content

Measurement of Forest Structure with Hemispherical Photography

  • Chapter
  • First Online:
Book cover Hemispherical Photography in Forest Science: Theory, Methods, Applications

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 28))

Abstract

This chapter presents the theoretical concepts necessary to link optical sensor data to forest structural attributes . Forest stand architecture is relatively complex and spatially variable, and many approaches can be used for its measurement: from traditional forest measurements in ground plots , to the statistical representation of forest attributes with the use of allometric relationships , and to the use of optical sensors. The forest parameters routinely measured are presented followed by the specific measurements that optical field instruments provide. Emphasis is placed on the optical sensors measuring light transmission through the forest canopy using the hemispherical view approach and, more specifically, on the use of hemispherical photographs. Strengths and weaknesses of forest canopy structural attributes measured based on Beer’s law , in particular from canopy gaps as seen from a hemispherical sensor or photograph, are presented. Finally, scaling issues are introduced from single trees to a stand and from stands to area mapping with satellite sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(\alpha\) :

Woody to total area ratio (W/Lt)

\({\alpha}_f\) :

Elevation angle of a leaf

\(\bar{\alpha}_f\) :

Mean leaf elevation angle

CC:

Chen and Cihlar (1995) clumping method

CLX:

Leblanc et al. (2005a) clumping method

CO :

Canopy openness (%)

G(θ):

Projection coefficient at view (zenith) angle θ

γE :

Needle-to-shoot-area ratio

L :

Leaf Area Index defined as one-half the total leaf area per unit of horizontal ground (m2/m2)

L e (θ):

‘Effective’ leaf area index at view (zenith) angle θ (m2/m2)

L et (θ):

‘Effective’ plant area index at view (zenith) angle θ (m2/m2)

L t :

Plant area index defined as one-half the total plant area per unit of horizontal ground (m2/m2)

L t (θ):

Plant area index at view (zenith) angle θ (m2/m2)

W :

Woody (twig, branch, and bole) area index (m2/m2)

PCA LAI-2000:

Plant Canopy Analyzer LAI-2000 from LI-COR ©

LX:

Lang and Xiang (1986) clumping method

P(θ):

Gap fraction at view (zenith) angle θ

θ:

Zenith angle (degree)

TRAC:

Tracing Radiation and Architecture of Canopies

Ω(θ):

Element clumping index at spatial scales greater than the conifer shoot or broadleaf at view (zenith) angle θ

References

  • Anderson MC (1964) Studies of the woodland light climate I. The photographic computation of light condition. J Ecol 52:27–41

    Article  Google Scholar 

  • Avery TE, Burkhart HE (2002) Forest measurements, 5th edn. McGraw-Hill, New York, 456 p

    Google Scholar 

  • Barclay HJ, Trofymov JA, Leach RI (2000) Assessing bias from boles in calculating leaf area index in immature Douglas-fir with the LI-COR canopy analyzer. Agric For Meteorol 100:255–260

    Article  Google Scholar 

  • Beckschäfer P, Seidel D, Kleinn C, Xu J (2013) On the exposure of hemispherical photographs in forests. iForest 6:228–237 [online 2013-06-13] URL: http://www.sisef.it/iforest/contents/?id=ifor0957-006

  • Bonhomme R, Chartier P (1972) The interpretation and automatic measurement of hemispherical photographs to obtain sunlit foliage area and gap frequency. Israel J Agr Res 22:53–61

    Google Scholar 

  • Campbell GS (1990) Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agric For Meteorol 49:173–176

    Article  Google Scholar 

  • Campbell GS, Norman JM (1989) The description and measurement of plant canopy structure. In: Russell G, Marshall B, Jarvis PG (eds) Plant canopies: their growth, form and function. Cambridge University Press, Cambridge, pp 1–19

    Chapter  Google Scholar 

  • Cescatti A (2007) Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs: methodology and comparison with standard thresholding techniques. Agric For Meteorol 143:1–12

    Article  Google Scholar 

  • Chapman L (2007) Potential applications of near infra-red hemispherical imagery in forest environments. Agric For Meteorol 143:151–156

    Article  Google Scholar 

  • Chen JM (1996) Optically-based methods for measuring seasonal variation in leaf area index in boreal conifer stands. Agric For Meteorol 80:135–163

    Article  Google Scholar 

  • Chen JM, Black TA (1992) Defining leaf area index for non-flat leaves. Plant Cell Environ 15:421–429

    Article  Google Scholar 

  • Chen JM, Cihlar J (1995) Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Appl Opt 34:6211–6222

    Article  CAS  PubMed  Google Scholar 

  • Chen JM, Black TA, Adams RS (1991) Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand. Agric For Meteorol 56:129–143

    Article  CAS  Google Scholar 

  • Chen JM, Rich PM, Gower ST, Norman JM, Plummer S (1997) Leaf area index of boreal forests: theory, techniques and measurements. J Geophys Res 102(D24):29429–29444

    Article  Google Scholar 

  • Chen JM, Pavlic G, Brown L, Cihlar J, Leblanc SG, White HP, Hall RJ, Peddle DR, King DJ, Trofymow JA, Swift E, Van der Sanden J, Pellika PKE (2002) Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens Environ 80:165–184

    Article  Google Scholar 

  • Chen JM, Liu J, Leblanc SG, Lacaze R, Roujean J-L (2003) Multi-angular remote sensing for estimating carbon absorption by vegetation. Remote Sens Environ 84:516–525

    Article  Google Scholar 

  • Chen JM, Menges C, Leblanc SG (2005) Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens Environ 97:447–457

    Article  Google Scholar 

  • Chen JM, Govind A, Sonnentag O, Zhang Y, Barr A, Amiro B (2006) Leaf area index measurements at Fluxnet-Canada forest sites. Agric For Meteorol 140:257–268

    Article  Google Scholar 

  • Cihlar J, Latifovic R, Chen J, Beaubien J, Li Z, Magnussen S (2000) Selecting representative high resolution sample images for land cover studies. Part 2: application to estimating land cover composition. Remote Sens Environ 72:127–138

    Article  Google Scholar 

  • Coops NC, Waring RH (2001) The use of multi-scale remote sensing imagery to derive regional estimates of forest growth capacity using 3-PGS. Remote Sens Environ 75:324–334

    Google Scholar 

  • Disney MI, Lewis P, North PRJ (2000) Monte Carlo ray tracing in optical canopy reflectance modelling. Remote Sens Rev 18:163–196

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization) (2017) GTOS-EVC T11 leaf area index (LAI). http://www.fao.org/gtos/ecv-t11.html. Accessed 6 March 2017

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Fournier RA, Landry R, August NM, Fedosejevs G, Gauthier RP (1996) Modelling light obstruction in three conifer forests using hemispherical photography and fine tree architecture. Agric For Meteorol 82(1–4):47–72

    Google Scholar 

  • Fournier RA, Mailly D, Walter J-MN, Soudani K (2003) Indirect measurement of forest canopy structure from in situ optical sensors. In: Wulder MA, Franklin SE (eds) Remote sensing of forest environments: concepts and case studies. Kluwer, Dordrecht, pp 77–113

    Chapter  Google Scholar 

  • Fournier RA, Grenier M, Lavoie A, Hélie R (2007) Towards a strategy to implement the Canadian Wetland Inventory using satellite remote sensing. Can J Remote Sens 33:S1–S16

    Article  Google Scholar 

  • Franklin SE (2001) Remote sensing for sustainable forest management. CRC Press (Lewis), Boca Raton, FL, 407 p

    Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP (1999) Gap light analyzer (GLA), Version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York. 52 p

    Google Scholar 

  • Frazer GW, Fournier RA, Trofymow JA, Hall RJ (2001) A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agric For Meteorol 109:249–263

    Google Scholar 

  • Frazer GW, Fournier RA, Leblanc SG, Walter JMN (2017) View angle-dependent clumping indices for Indirect LAI estimation. In: Fournier RA, Hall RJ Hemispherical photography in forest science: theory, methods, and applications. Springer, Heidelberg

    Google Scholar 

  • Gillis MD, Leckie DG (1993) Forestry Canada, Petawawa National Forestry Institute. Chalk River, ON. Information Report PI-X-114

    Google Scholar 

  • Godin C (2000) Representing and encoding plant architecture: a review. Ann For Sci 57:413–438

    Article  Google Scholar 

  • Gonsamo A, D’odorico P, Pellikka P (2013). Measuring fractional forest canopy element cover and openness—definitions and methodologies revisited. Oikos 122:1283–1291

    Google Scholar 

  • Gower ST, Norman JM (1991) Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology 72:1896–1900

    Article  Google Scholar 

  • Gower ST, Kucharik JK, Norman JM (1999) Direct and indirect estimation of leaf area index, f APAR, and net primary production of terrestrial ecosystems. Remote Sens Environ 70:29–51

    Article  Google Scholar 

  • Hall RJ, Fernandes RA, Hogg EH, Brandt JP, Butson C, Case BS, Leblanc SG (2003) Relating aspen defoliation to changes in leaf area from field and satellite remote sensing perspectives. Can J Remote Sens 29:299–313

    Article  Google Scholar 

  • Hopkinson C, Chasmer L, Young-Pow C, Treitz P (2004) Assessing forest metrics with a ground-based scanning lidar. Can J For Res 34:573–583

    Article  Google Scholar 

  • Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Methods for leaf area index determination. Part I: Theories, sensors and hemispherical photography. Agric For Meteorol 121:19–35

    Article  Google Scholar 

  • Jonckheere I, Muys B, Coppin P (2005) Allometry and evaluation of in situ optical LAI determination in Scots pine: a case study in Belgium. Tree Physiol 25:723–732

    Article  CAS  PubMed  Google Scholar 

  • Jonckheere IGC, Macfarlane C, Walter J-MN (2017) Image analysis of hemispherical photographs, algorithms and calculation. In: Fournier RA, Hall RJ (eds) Hemispherical photography in forest science: theory, methods, applications. Springer, Berlin

    Google Scholar 

  • Kira T, Shinozaki K, Hozumi K (1969) Structure of forest canopies as related to their primary productivity. Plant Cell Physiol 10:129–142

    Google Scholar 

  • Kucharik CJ, Norman JM, Murdock LM, Gower ST (1997) Characterizing canopy nonrandomness with a multiband vegetation imager (MVI). J Geophys Res 102(D24):29455–29473

    Article  Google Scholar 

  • Kucharik CJ, Norman JM, Gower ST (1998) Measurements of branch area and adjusting leaf area index indirect measurements. Agric For Meteorol 91:69–88

    Article  Google Scholar 

  • Küßner R, Mosandl R (2000) Comparison of direct and indirect estimation of leaf area index in mature Norway spruce stands of eastern Germany. Can J For Res 30:440–447

    Article  Google Scholar 

  • Lacaze R, Chen JM, Roujean J-L, Leblanc SG (2002) Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument. Remote Sens Environ 79:84–95

    Article  Google Scholar 

  • Lang ARG (1987) Simplified estimate of leaf area index from transmittance of the sun’s beam. Agric For Meteorol 41:179–186

    Article  Google Scholar 

  • Lang ARG (1991) Application of some Cauchy’s theorems to estimation of surface areas of leaves, needles and branches of plants, and light transmittance. Agric For Meteorol 55:191–212

    Article  Google Scholar 

  • Lang ARG, Xiang Y (1986) Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies. Agric For Meteorol 35:229–243

    Article  Google Scholar 

  • Layton PA, Guynn ST, Guynn DC (2004) Biodiversity metrics in Sustainable Certification Programs. J of Forestry 102(3):46–52

    Google Scholar 

  • Leblanc SG (2002) Correction to the plant canopy gap-size analysis theory used by the tracing radiation and architecture of canopies (TRAC) instrument. Appl Opt 31:7667–7670

    Article  Google Scholar 

  • Leblanc SG (2006) Digital hemispherical photography (DHP) manual, version 2.3b. Natural Resources Canada, Canada Centre for Remote Sensing, Ottawa

    Google Scholar 

  • Leblanc SG, Chen JM (2000) A windows graphic user interface (GUI) for the five-scale model for fast BRDF simulations. Remote Sens Rev 19:293–305

    Article  Google Scholar 

  • Leblanc SG, Chen JM (2001) A practical scheme for correcting multiple scattering effects on optical LAI measurements. Agric For Meteorol 110:125–139

    Article  Google Scholar 

  • Leblanc SG, Fournier RA (2014) Hemispherical photography simulations with an architectural model to assess retrieval of leaf area index. Agric For Meteorol 194:64–76

    Article  Google Scholar 

  • Leblanc SG, Bicheron P, Chen JM, Leroy M, Cihlar J (1999) Investigation of directional reflectance in boreal forests using an improved 4-Scale model and airborne POLDER data. IEEE Trans Geosci Remote 37:1396–1414

    Article  Google Scholar 

  • Leblanc SG, Chen JM, White HP, Latifovic R Fernandes R, Roujean J-L, Lacaze R (2002) Mapping leaf area index heterogeneity over Canada using directional reflectance and anisotropy canopy reflectance models. In: IGARSS 2002, Proceedings of the IEEE international geoscience and remote sensing symposium, 24–28 June, Toronto, Ontario. CD-ROM. IEEE, Piscataway, New Jersey

    Google Scholar 

  • Leblanc SG, Chen JM, Fernandes R, Deering DW, Conley A (2005a) Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric For Meteorol 129:187–207

    Article  Google Scholar 

  • Leblanc SG, Chen JM, White HP, Latifovic R, Lacaze R, Roujean J-L (2005b) Canada-wide foliage clumping index mapping from multiangular POLDER measurements. Can J Remote Sens 31:364–376

    Article  Google Scholar 

  • Li X, Strahler A (1985) Geometric-optical modeling of a conifer forest canopy. IEEE Trans Geosci Remote 23:705–721

    Article  Google Scholar 

  • LI-COR (1991). LAI-2000 plant canopy analyzer operating manual. LI-COR Inc., Lincoln, Nebraska

    Google Scholar 

  • Liou KN (1980) An introduction to atmospheric radiation. International geophysics series, vol 26. Academic Press, San Diego

    Google Scholar 

  • Liu J, Chen JM, Cihlar J, Park WM (1997) A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens Environ 62:158–175

    Article  Google Scholar 

  • Lowell JL, Jupp DLB, Culvenor DS, Coops NC (2003) Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can J Remote Sens 5:607–622

    Google Scholar 

  • Macfarlane C, Hoffman M, Eamus D, Kerp N, Higginson S, McMurtrie R, Adams M (2007a) Estimation of leaf area index in eucalypt forest using digital photography. Agric For Meteorol 143:176–188

    Article  Google Scholar 

  • Macfarlane C, Grigg A, Evangelista C (2007b) Estimating forest leaf area using cover and fullframe fisheye photography: thinking outside the circle. Agric For Meteorol 146:1–12

    Article  Google Scholar 

  • Manninen T, Stenberg P, Rautiainen M, Voipio P, Smolander H (2005) Leaf area index estimation of boreal forest using ENVISAT ASAR. IEEE Trans Geosci Remote 43:2627–2635

    Article  Google Scholar 

  • Miller JB (1967) A formula for average foliage density. Aust J Bot 15:141–144

    Article  Google Scholar 

  • Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52

    Google Scholar 

  • Monteith JL (1973) Principles of environmental physics, 1st edn. Edward Arnold, London

    Google Scholar 

  • Myneni RB, Nemani RR, Running SW (1997) Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans Geosci Remote 35:1380–1393

    Article  Google Scholar 

  • Neumann HH, den Hartog G, Shaw RH (1989) Leaf area measurements based on hemispheric photographs and leaf-litter collection in a deciduous forest during autumn leaf-fall. Agric For Meteorol 45:325–345

    Article  Google Scholar 

  • Nilson T (1971) A theoretical analysis of the frequency of gaps in plant stands. Agric For Meteorol 8:25–38

    Article  Google Scholar 

  • Nilson T (1999) Inversion of gap frequency data in forest stands. Agric For Meteorol 98–99:437–448

    Article  Google Scholar 

  • Nilson T, Peterson U (1991) A forest canopy reflectance model and a test case. Remote Sens Environ 37:131–142

    Article  Google Scholar 

  • Nobis M, Hunziker U (2005) Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agric For Meteorol 128:243–250

    Article  Google Scholar 

  • Norman JM (1993) Scaling processes between leaf and canopy levels. In: Ehleringer JR, Field CB (eds) Scaling physiological processes: leaf to globe. Academic Press, San Diego, pp 41–66

    Chapter  Google Scholar 

  • Norman JM, Campbell GS (1989) Canopy structure. In: Pearcy RW, Ehleringer J, Mooney HA, Rundel PW (eds) Physiological plant ecology: field methods and instrumentation. Chapman & Hall, London, pp 301–325

    Chapter  Google Scholar 

  • Oker-Blom P, Smolander H (1988) The ratio of shoot silhouette area to total needle area in Scots pine. For Sci 34:894–906

    Google Scholar 

  • Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45:573–593

    Google Scholar 

  • Pisek J, Lang M, Nilson T, Korhonen L, Karu H (2011) Comparison of methods for measuring gap size distribution and canopy nonrandomness at Järvselja RAMI (Radiation Transfer Model Intercomparison) test sites. Agric For Meteorl 51:365–377

    Article  Google Scholar 

  • Privette JL, Myneni RB, Knyazikhin Y, Mukelabai M, Roberts G, Tian Y, Wang Y, Leblanc SG (2002) Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari. Remote Sens Environ 83:232–243

    Article  Google Scholar 

  • Privette JL, Tian Y, Roberts G, Scholes RJ, Wang Y, Caylor KK, Frost P, Mukelabai M (2004) Vegetation structure characteristics and relationships of Kalahari woodlands and savannas. Global Change Biol 10:281–291

    Article  Google Scholar 

  • Pypker TG, Bond BJ, Link TE, Marks D, Unsworth MH (2005) The importance of canopy structure controlling the interception loss of rainfall: examples from a young and an old-growth Douglas-fir forest. Agric For Meteorol 130:113–129

    Article  Google Scholar 

  • Rich PM (1990) Characterizing plant canopies with hemispherical photographs. Remote Sens Rev 5:13–29

    Article  Google Scholar 

  • Ross J (1981) The radiation regime and architecture of plant stands. Dr. W. Junk Bublishers, The Hague

    Book  Google Scholar 

  • Running SW, Nemani RR, Peterson DL, Band LE, Potts DF, Pierce LL, Spanner MA (1989) Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 70:1090–1101

    Article  Google Scholar 

  • Ryu Y, Nilson T, Kobayashi H, Sonnentag O, Law BE, Baldocchi DD (2010) On the correct estimation of effective leaf area index: does it reveal information on clumping effects? Agric For Meteorol 150:463–472

    Article  Google Scholar 

  • Schleppi P, Paquette A (2017) Solar radiation in forests: theory for hemispherical photography. In: Fournier RA, Hall RJ (eds) Hemispherical photography in forest science: theory, methods, applications. Springer, Berlin

    Google Scholar 

  • Skowronski N, Clark K, Nelson R, Hom J, Patterson M (2007) Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey. Remote Sens Environ 108:123–129

    Article  Google Scholar 

  • Stenberg P (1996) Simulations of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiol 16:99–108

    Article  PubMed  Google Scholar 

  • Stenberg P (2006) A note on the G-function for needle leaf canopies. Agric For Meteorol 136:76–79

    Article  Google Scholar 

  • Stenberg P (2007) Simple analytical formula for calculating average photon recollision probability in vegetation canopies. Remote Sens Environ 109:221–224

    Article  Google Scholar 

  • St-Onge B, Véga C, Fournier RA, Hu Y (2008) Mapping canopy height using a combination of digital stereo-photogrammetry and lidar. Int J Remote Sens 29:3343–3364

    Article  Google Scholar 

  • Sun H, Zhang J, Duan A He C (2007) A review of stand basal area growth models. Forestry Stud China 9:85–94

    Google Scholar 

  • Thomas SC, Winner WE (2000) A rotated ellipsoidal angle density function improves estimation of foliage inclination distributions in forest canopies. Agric For Meteorol 100:19–24

    Article  Google Scholar 

  • Treuhaft RN, Asner GP, Law BE, Van Tuyl S (2002) Forest leaf area density profiles from the quantitative fusion of radar and hyperspectral data. J Geophys Res 107(D21):4568. doi:10.1029/2001JD000646

    Article  Google Scholar 

  • Treuhaft RN, Asner GP, Law BE (2003) Structure-based forest biomass from fusion of radar and hyperspectral observations. Geophys Res Lett 30:1472–1476

    Article  Google Scholar 

  • Wagner S (1998) Calibration of grey values of hemispherical photographs for image analysis. Agric For Meteorol 90:103–117

    Article  Google Scholar 

  • Wagner S (2001) Relative radiance measurements and zenith angle dependent segmentation in hemispherical photography. Agric For Meteorol 10:103–115

    Article  Google Scholar 

  • Wagner S, Hagemeier M (2006) Method of segmentation affects leaf inclination angle estimation in hemispherical photography. Agric For Meteorol 139:12–24

    Article  Google Scholar 

  • Walter J-MN, Fournier RA, Soudani K, Meyer E (2003) Integrating clumping effects in forest canopy structure: an assessment through hemispherical photographs. Can J Remote Sens 29:388–410

    Article  Google Scholar 

  • Wang W-M, Li Z-L, Su H-B (2006) Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agric For Meteorol 143:106–122

    Article  Google Scholar 

  • Warren Wilson J (1960) Inclined point quadrats. New Phytol 59:1–8

    Article  Google Scholar 

  • Warren Wilson J, Reeve JE (1959) Analysis of the spatial distribution of foliage by two-dimensional point quadrats. New Phytol 58:92–101

    Article  Google Scholar 

  • Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agric For Meteorol 121:37–53

    Article  Google Scholar 

  • Welles JM, Norman JM (1991) Instrument for indirect measurement of canopy architecture. Agron J 83:818–825

    Article  Google Scholar 

  • Zhang Y, Chen JM, Miller JR (2005) Determining digital hemispherical photograph exposure for leaf area index estimation. Agric For Meteorol 133:166–181  

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain G. Leblanc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Leblanc, S.G., Fournier, R.A. (2017). Measurement of Forest Structure with Hemispherical Photography. In: Fournier, R., Hall, R. (eds) Hemispherical Photography in Forest Science: Theory, Methods, Applications. Managing Forest Ecosystems, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1098-3_3

Download citation

Publish with us

Policies and ethics