Skip to main content

Luminescence Spectroscopy of Nanophosphors

  • Conference paper
  • First Online:
Nano-Optics: Principles Enabling Basic Research and Applications

Abstract

The properties of phosphor materials in nanoscale form, usually termed “nanophosphors”, present particular aspects that are worthy of extensive investigations at both fundamental and applicative level. Nanophosphors are mainly represented by compounds doped with rare earths, whose 4f optically active electrons are protected from static and dynamic perturbations by the 5s and 5p subshells.

In this paper we first review the spectroscopy of rare earth ions and the properties of bulk phosphors (physical mechanisms underlying luminescence processes, thermal line broadening and line shift) and then consider the corresponding scenario at the nanoscale and discuss the role that spectroscopy may play in the investigation of nanophosphors. The paper aims at giving a background to a reader new to the spectroscopy of nanophosphors and useful points of discussion as well as guidelines for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiedemann, E. (1888). Über Fluorescenz und Phosphorescenz, I. Abhandlung (On fluorescence and phosphorescence, first paper). Annalen der Physik, 34, 446–463.

    Article  ADS  Google Scholar 

  2. Blasse, G., & Grabmaier, B. C. (1994). Luminescent materials. Berlin: Springer.

    Book  Google Scholar 

  3. Ronda, C. R. (2008). In C. R. Ronda (Ed.), Luminescence from theory to applications (pp. 1–34). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  4. Auzel, F. (2004). Upconversion and anti-Stokes processes with f and d ions in solids. Chemical Reviews, 104, 139–173.

    Article  Google Scholar 

  5. Downing, E., Hesselink, L., Ralston, J., & Macfarlane, R. (1996). A three-color, solid state, three-dimensional display. Science, 273, 1185–1189.

    Article  ADS  Google Scholar 

  6. Silversmith, A. J., Lenth, W., & Macfarlane, R. M. (1987). Green infrared-pumped erbium upconversion laser. Applied Physics Letters, 51, 1977–1979.

    Article  ADS  Google Scholar 

  7. Sandrock, T., Scheife, H., Heumann, E., & Huber, G. (1997). High-power continuous-wave upconversion fiber laser at room temperature. Optics Letters, 22, 808–810.

    Article  ADS  Google Scholar 

  8. Wang, F., & Liu, X. G. (2009). Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chemical Society Reviews, 38, 976–989.

    Article  Google Scholar 

  9. Yi, G. S., Lu, H. C., Zhao, S. Y., Yue, G., Yang, W. J., & Chen, D. P. (2004). Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Letters, 4, 2191–2196.

    Article  ADS  Google Scholar 

  10. Carlos, L. D., Ferreira, R. A., & Ribeiro, S. J. (2009). Lanthanide-containing light-emitting organic-inorganic hybrids: A bet on the future. Advanced Materials, 21, 509–534.

    Article  Google Scholar 

  11. Sun, L. D., Dong, H., Zhang, P. Z., & Yan, C. H. (2015). Upconversion of rare earth nanomaterials. Annual Review of Physical Chemistry, 66, 619–642.

    Article  ADS  Google Scholar 

  12. Feng, W., Han, C., & Li, F. (2013). Upconversion-nanophosphor-based functional nanocomposites. Advanced Materials, 25, 5287–5303.

    Article  Google Scholar 

  13. Shen, J., Sun, L. D., & Yan, C. H. (2008). Luminescent rare earth nanomaterials for bioprobe applications. Dalton Transactions, 42, 5687–5697.

    Article  Google Scholar 

  14. Wang, F., Banerjee, D., Liu, Y. S., Chen, X. Y., & Liu, X. G. (2010). Upconversion nanoparticles in biological labeling, imaging and therapy. The Analyst, 135, 1839–1854.

    Article  ADS  Google Scholar 

  15. Zhou, J., Liu, Z., & Li, F. Y. (2012). Upconversion nanophosphors for small-animal imaging. Chemical Society Reviews, 41, 1323–1349.

    Article  Google Scholar 

  16. Chen, J., & Zhao, J. X. (2012). Upconversion nanomaterials: Synthesis, mechanism, and applications in sensing. Sensors, 12, 2414–2435.

    Article  Google Scholar 

  17. Zhang, P., Rogelj, S., Nguyen, K., & Wheeler, D. (2006). Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. Journal of the American Chemical Society, 128, 12410–12411.

    Article  Google Scholar 

  18. Hampl, J., Hall, M., Mufti, N. A., Yao, Y. M., Mac Queen, D. B., Wright, W. H., & Cooper, D. E. (2001). Upconverting phosphor reporters in immunochromatographic assays. Analytical Biochemistry, 288, 176–187.

    Article  Google Scholar 

  19. VandeRijke, F., Zijlmans, H., Li, S., Vail, T., Raap, A. K., Niedala, R. S., & Tanke, H. J. (2001). Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotechnology, 19, 273–276.

    Article  Google Scholar 

  20. Lim, S. F., Riehn, R., Ryu, W. S., Khanarian, N., Tung, C. K., Tank, D., & Austin, R. H. (2006). In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Letters, 6, 169–174.

    Article  ADS  Google Scholar 

  21. Chatterjee, D. K., Rufaihah, A. J., & Zhang, Y. (2006). Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 29, 937–943.

    Article  Google Scholar 

  22. Gai, S. L., Yang, P. P., Li, C. X., Wang, W. X., Dai, Y. L., Niu, N., & Lin, J. (2010). Nanomorphology and charge generation in bulk heterojunctions based on low-bandgap dithiophene polymers with different bridging atoms. Advanced Functional Materials, 20, 1166–1172.

    Article  Google Scholar 

  23. Huang, X. Y., Han, S. Y., Huang, W., & Liu, X. G. (2013). Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chemical Society Reviews, 42, 173–201.

    Article  Google Scholar 

  24. Idris, N. M., Jaykumar, M. K. G., Bansal, A., & Zhang, Y. (2015). Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chemical Society Reviews, 44, 1449–1478. and references therein.

    Article  Google Scholar 

  25. Li, Z. X., Shi, F. B., Zhang, T., Wu, H. S., Sun, L. D., & Yan, C. H. (2011). Ytterbium stabilized ordered mesoporous titania for near-infrared photocatalysis. Chemical Communications, 47(28), 8109–8111.

    Article  Google Scholar 

  26. de Wild, J., Meijerink, A., Rath, J. K., van Sark, W. G. J. H. M., & Schropp, R. E. I. (2011). Upconverter solar cells: Materials and applications. Energy & Environmental Science, 4, 4835–4848.

    Article  Google Scholar 

  27. Jaque, D., & Vetrone, F. (2012). Luminescence nanothermometry. Nanoscale, 4(15), 4301–4326.

    Article  ADS  Google Scholar 

  28. Zhang, C., Zhou, H. P., Liao, L. Y., Feng, W., Sun, W., Li, Z. X., Xu, C. H., Fang, C. J., Sun, L. D., Zhang, Y. W., & Yan, C. H. (2010). Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: Rewritable optical storage with nondestructive readout. Advanced Materials, 22, 633–637.

    Article  Google Scholar 

  29. Li, D., Ding, C. R., Song, G., Lu, S. Z., Zhang, Z., Shi, Y. N., Shen, H., Zhang, Y. L., Ouyang, H. Q., & Wang, H. (2010). Controlling the morphology of erbium-doped yttrium fluoride using acids as surface modifiers: Employing adsorbed chlorine ions to inhibit the quenching of upconversion fluorescence. Journal of Physical Chemistry C, 114, 21378–21384.

    Article  Google Scholar 

  30. Suyver, J. F., Aebischer, A., Biner, D., Gerner, P., Grimm, J., Heer, S., Krämer, K. W., Reinhard, C., & Güdel, H. U. (2005). Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Optical Materials, 27, 1111–1130.

    Article  ADS  Google Scholar 

  31. Haase, M., & Schäfer, H. (2011). Upconverting nanoparticles. Angewandte Chemie International Edition in English, 50, 5808–5829.

    Article  Google Scholar 

  32. Li, X. M., Zhang, F., & Zhao, D. Y. (2013). Highly efficient lanthanide upconverting nanomaterials: Progress and challenges. Nano Today, 8, 643–676.

    Article  Google Scholar 

  33. Sun, L. D., Wang, Y. F., & Yan, C. H. (2014). Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: Small size and tunable emission/excitation spectra. Accounts of Chemical Research, 47, 1001–1009.

    Article  Google Scholar 

  34. Chen, G. Y., Qiu, H. L., Prasad, P. N., & Chen, X. Y. (2014). Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chemical Reviews, 114, 5161–5214.

    Article  Google Scholar 

  35. Gai, S. L., Li, C. X., Yang, P. P., & Lin, J. (2014). Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chemical Reviews, 114, 2343–2389.

    Article  Google Scholar 

  36. Bhargava, R. N., Gallagher, D., Hong, X., & Nurmikko, A. (1994). Optical properties of manganese-doped nanocrystals of ZnS. Physical Review Letters, 72, 416–419.

    Article  ADS  Google Scholar 

  37. Huang, X., Han, S., Huang, W., & Liu, X. (2013). Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chemical Society Reviews, 42, 173–201 and references therein.

    Article  Google Scholar 

  38. Collins, J. (2016). Non-radiative processes in crystals and in nanocrystals. ECS Journal of Solid State Science and Technology, 5(1), R3170–R3184 and references therein.

    Article  Google Scholar 

  39. Liu, G. K., Zhuang, H. Z., & Chen, X. Y. (2002). Restricted phonon relaxation and anomalous thermalization of rare-earth ions in nanocrystals. Nano Letters, 2, 535–539.

    Article  ADS  Google Scholar 

  40. Meltzer, R. S., & Hong, K. S. (2000). Electron-phonon interactions in insulating nanoparticles: Eu2O3. Physical Review B, 61, 3396–3496.

    Article  ADS  Google Scholar 

  41. Yang, H. S., Feofilov, S. P., William, D. K., Milora, J. C., Tissue, B. M., Meltzer, R. S., & Dennis, W. M. (1999). One phonon relaxation processes in Y2O3: Eu3+ nanocrystals. Physica B, 263–264, 476–478.

    Article  Google Scholar 

  42. Tissue, B. M. (1998). Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chemistry of Materials, 10, 2837–2845.

    Article  Google Scholar 

  43. Valeur, B., & Berberan-Santos, M. N. (2011). A brief history of fluorescence and phosphorescence before the emergence of quantum theory. Journal of Chemical Education, 88, 731–738.

    Article  ADS  Google Scholar 

  44. Rakovich, Y. P., & Donegan, J. F. (2008). Anti-Stokes photoluminescence in semiconductor nanocrystal quantum dots. In A. L. Rogach (Ed.), Semiconductor nanocrystal quantum dot (pp. 257–275). Wien: Springer.

    Chapter  Google Scholar 

  45. Görller-Walrand, C., & Binnemans, K. (1996). Rationalization of crystal field parametrization. In K. A. Gscheidner Jr., & L. Eyring (Eds.), Handbook on the physics and chemistry of rare earths (Vol. 23, pp. 121–283). Amsterdam: Elsevier Science B.V.

    Google Scholar 

  46. Soukka, T., Kuningas, K., Rantanen, T., Haaslahti, V., & Lövgren, T. (2005). Photochemical characterization of upconverting inorganic lanthanide phosphors as potential labels. Journal of Fluorescence, 15, 513–528.

    Article  Google Scholar 

  47. Teng, X., Zhu, Y., Wei, W., Wang, S., Huang, J., Naccache, R., Hu, W., Yoong Tok, A. I., Han, Y., Zhang, Q., Fan, Q., Huang, W., Capobianco, J. A., & Huang, L. (2012). Lanthanide-doped NaxScF3+ x nanocrystals: Crystal structure evolution and multicolor tuning. Journal of the American Chemical Society, 134(20), 8340–8343.

    Article  Google Scholar 

  48. Ding, Y. J., Teng, X., Zhu, H., Wang, L. L., & Pei, W. B. (2013). Orthorhombic KSc2F7:Yb/Er nanorods: Controlled synthesis and strong red upconversion emission. Nanoscale, 5, 11928–11932.

    Article  ADS  Google Scholar 

  49. Mahalingam, V., Hazra, C., Naccache, R., Vetrone, F., & Capobianco, J. A. (2013). Enhancing the color purity of the green upconversion emission from Er3+/Yb3+-doped GdVO4 nanocrystals via tuning of the sensitizer concentration. Journal of Materials Chemistry C, 1, 6536–6540.

    Article  Google Scholar 

  50. Wang, J., Deng, R., MacDonald, M. A., Chen, B., Yuan, J., Wang, F., Chi, D., Andy Hor, T. S., Zhang, P., Liu, G., Han, Y., & Liu, X. (2014). Enhancing multiphoton upconversion through energy clustering at sublattice level. Nature Materials, 13, 157–162.

    Article  ADS  Google Scholar 

  51. Judd, B. R. (1962). Optical absorption intensities of rare-earth ions. Physics Reviews, 127, 750–761.

    Article  ADS  Google Scholar 

  52. Chang, N. C., & Gruber, J. B. (1964). Spectra and energy levels of Eu3+ in Y2O3. Journal of Chemical Physics, 41, 3227–3234.

    Article  ADS  Google Scholar 

  53. Buijs, M., Meyerink, A., & Blasse, G. (1987). Energy transfer between Eu3+ ions in a lattice with two different crystallographic sites: Y2O3:Eu3+, Gd2O3: Eu3+ and Eu2O3. Journal of Luminescence, 37, 9–20.

    Article  ADS  Google Scholar 

  54. Ofelt, G. S. (1962). Intensities of crystal spectra of rare‐earth ions. Journal of Chemical Physics, 37, 511–520.

    Article  ADS  Google Scholar 

  55. Dieke, G. H. (1968). Spectra and energy levels of rare earth ions in crystals. New York: Wiley Interscience.

    Google Scholar 

  56. Blasse, G. (1992). Vibronic transitions in rare earth spectroscopy. International Reviews in Physical Chemistry, 11, 71–100.

    Article  ADS  Google Scholar 

  57. Di Bartolo, B., & Powell, R. C. (2014). Crystal symmetry, lattice vibrations and optical spectroscopy of solids: A group theoretical approach. Singapore: World Scintific Publishing Co. Ptc. Ltd. 596224.

    Book  MATH  Google Scholar 

  58. Hizhnyakov, V., Boltrushko, V., Pae, K., & Vaikjarv, T. (2011). Zero-phonon lines: Novel manifestations of vibronic interactions in impurity centres of solid. Condensed-Matter Spectroscopy-Optics and Spectroscopy, 111, 377–385.

    Article  ADS  Google Scholar 

  59. Auzel, F. (1980). In B. Di Bartolo (Ed.), Radiationless processes. New York: Plenum.

    Google Scholar 

  60. Dexter, D. L., & Schulman, J. H. (1954). Theory of concentration quenching in inorganic Phosphors. The Journal of Chemical Physics, 22, 1063–1070.

    Article  ADS  Google Scholar 

  61. Smet, P. F., Avci, N., Loos, B., Van Haecke, J. E., & Poelman, D. (2007). Structure and photoluminescence of (Ca,Eu)2SiS4 powders. Journal of Physics Condensed Matter, 19, 246223 (12 pp).

    Article  ADS  Google Scholar 

  62. Auzel, F. (2002). A fundamental self-generated quenching center for lanthanide-doped high-purity solids. Journal of Luminescence, 100, 125–130.

    Article  ADS  Google Scholar 

  63. Tamura, A. (1995). Smoothed density of states of electrons and smoothed frequency spectrum of phonons for a mesoscopic system. Physical Review B, 52, 2688–2676.

    ADS  Google Scholar 

  64. Schuurmans, M. F. H., & van Dijk, J. M. F. (1984). On radiative and non-radiative decay times in the weak coupling limit. Physica B, 123, 131–155.

    Article  Google Scholar 

  65. Cesaria, M., Collins, J., & Di Bartolo, B. (2016). On the efficient warm white-light emission from nano-sized Y2O3. Journal of Luminescence, 169, 574–580.

    Article  ADS  Google Scholar 

  66. Chen, X., Di Bartolo, B., Barnes, N. P., & Walsh, B. M. (2004). Thermal tuning and broadening of the spectral lines of trivalent neodymium in laser crystals. Physica Status Solidi B, 241((8), 1957–1976.

    Article  ADS  Google Scholar 

  67. Meltzer, R. S., Yen, W. M., Zheng, H., Feofilov, S. P., Dejneka, M. J., Tissue, B. M., & Yuan, H. B. (2000). Evidence for long-range interactions between rare-earth impurity ions in nanocrystals embedded in amorphous matrices with the two-level systems of the matrix. Physical Review B, 64, 100201-R (1–4).

    Google Scholar 

  68. Liu, G. K., Chen, X. Y., Zhuang, H. Z., Li, S., & Niedbala, R. S. (2003). Confinement of electron-phonon interaction on luminescence dynamics in nanophosphors of Er3+: Y2O2S. Journal of Solid State Chemistry, 171, 123–132.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baldassare Di Bartolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Cesaria, M., Di Bartolo, B. (2017). Luminescence Spectroscopy of Nanophosphors. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Optics: Principles Enabling Basic Research and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0850-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0850-8_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0848-5

  • Online ISBN: 978-94-024-0850-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics