Skip to main content

Nanostructures for Photonics

  • Reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Definition

“Nanostructures for Photonics” represents a collection of devices whose working principles are based on photons at the nanoscale level.

Overview

In the last decade, new disciplines emerged where the terms nano and photon happen to play a fundamental descriptive role. Their origin dates back to the ancient Greece, with nano (=νανοζ) indicating something of small dimensions, and photon (=φϖΨψρζ) indicating the light. In Physics, but also in Chemistry, Biology, Material Science, and many more fields these terms have been used for indicating the studies of extremely small objects by means of light. This new technological frontier has already produced some amazing results: LCD based mobile phones, nanoparticles for optical tagging of biological molecules and hyperthermia, or devices for single-molecule detection are just few of many examples where nanophotonics plays a crucial role. In terms of optical devices, their functionality can be divided in three general key parts: light...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carbone, L., Nobile, C., De Giorgi, M., Sala, F.D., Morello, G., Pompa, P., Hytch, M., Snoeck, E., Fiore, A., Franchini, I.R., Nadasan, M., Silvestre, A.F., Chiodo, L., Kudera, S., Cingolani, R., Krahne, R., Manna, L.: Synthesis and micrometer-scale assembly of colloidal Cdse/Cds nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942 (2007)

    Article  Google Scholar 

  2. Efros, A.L., Rosen, M., Kuno, M., Nirmal, M., Norris, D.J., Bawendi, M.: Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B-Condens. Mat. 54, 4843 (1996)

    Article  Google Scholar 

  3. Zavelani-Rossi, M., Lupo, M.G., Krahne, R., Manna, L., Lanzani, G.: Lasing in self-assembled microcavities of Cdse/Cds Core/Shell colloidal quantum rods. Nanoscale 2, 931 (2010)

    Article  Google Scholar 

  4. Krahne, R., Zavelani-Rossi, M., Lupo, M.G., Manna, L., Lanzani, G.: Amplified spontaneous emission from core and shell transitions in Cdse/Cds nanorods fabricated by seeded growth. Appl. Phys. Lett. 98, 063105 (2011)

    Article  Google Scholar 

  5. Kazes, M., Lewis, D.Y., Ebenstein, Y., Mokari, T., Banin, U.: Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater. 14, 317 (2002)

    Article  Google Scholar 

  6. Martiradonna, L., Carbone, L., De Giorgi, M., Manna, L., Gigli, G., Cingolani, R., De Vittorio, M.: High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology. Appl. Phys. Lett. 88, 181108 (2006)

    Article  Google Scholar 

  7. Shoji, S., Proietti Zaccaria, R., Sun, H., Kawata, S.: Multi-step multi-beam laser interference patterning of three-dimensional photonic lattices. Opt. Express 14, 2039 (2006)

    Article  Google Scholar 

  8. Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547 (1996)

    Article  Google Scholar 

  9. Galli, M., Agio, M., Andreani, L.C., Atzeni, L., Bajoni, D., Guizzetti, G., Businaro, L., Di Fabrizio, E., Romanato, F., Passaseo, A.: Optical properties and photonic bands of GaAs photonic crystal waveguides with tilted square lattice. Eur. Phys. J. B 27, 79 (2002)

    Google Scholar 

  10. Malvezzi, A.M., Vecchi, G., Patrini, M., Guizzetti, G., Andreani, L.C., Romanato, F., Businaro, L., Di Fabrizio, E., Passaseo, A., De Vittorio, M.: Resonant second-harmonic generation in a GaAs photonic crystal waveguide. Phys. Rev. B 68, 1613061 (2003)

    Article  Google Scholar 

  11. De Vittorio, M., Todaro, M.T., Stomeo, T., Cingolani, R., Cojoc, D., Di Fabrizio, E.: Two-dimensional photonic crystal waveguide obtained by e-beam direct writing of SU8-2000 photoresist. Microelectron. Eng. 73–74, 388 (2004)

    Article  Google Scholar 

  12. Proietti Zaccaria, R., Verma, P., Kawaguchi, S., Shoji, S., Kawata, S.: Manipulating full photonic band gaps in two dimensional birefringent photonic crystals. Opt. Express 16, 14812 (2008)

    Article  Google Scholar 

  13. Zhao, H., Proietti Zaccaria, R., Verma, P., Song, J., Sun, H.: Single-mode operation regime for 12-fold index-guiding quasicrystal optical fibers. Appl. Phys. B 100, 499 (2010)

    Article  Google Scholar 

  14. Zhao, H., Proietti Zaccaria, R., Song, J., Kawata, S., Sun, H.: Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of constituent parts. Phys. Rev. B 79, 115118 (2009)

    Article  Google Scholar 

  15. Zhao, H., Proietti Zaccaria, R., Verma, P., Song, J., Sun, H.: Validity of the V parameter for photonic quasi-crystal fibers. Opt. Lett. 35, 071064 (2010)

    Google Scholar 

  16. Veselago, V.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 10, 509 (1968)

    Article  Google Scholar 

  17. Papasimakis, N., Luo, Z., Shen, Z.X., De Angelis, F., Di Fabrizio, E., Nikolaenko, A.E., Zheludev, N.I.: Graphene in a photonic metamaterial. Opt. Express 18, 8353 (2010)

    Article  Google Scholar 

  18. Nikolaenko, A.E., De Angelis, F., Boden, S.A., Papasimakis, N., Ashburn, P., Di Fabrizio, E., Zheludev, N.I.: Carbon nanotubes in a photonic metamaterial. Phys. Rev. Lett. 104, 153902 (2010)

    Article  Google Scholar 

  19. Sámson, Z.L., MacDonald, K.F., De Angelis, F., Gholipour, B., Knight, K., Huang, C.C., Di Fabrizio, E., Hewak, D.W., Zheludev, N.I.: Metamaterial electro-optic switch of nanoscale thickness. Appl. Phys. Lett. 96, 143105 (2010)

    Article  Google Scholar 

  20. Mary, A., Rodrigo, S.G., Garcia-Vidal, F.J., Martin-Moreno, L.: Theory of negative-refractive-index response of double-fishnet structures. Phys. Rev. Lett. 101, 103902 (2008)

    Article  Google Scholar 

  21. Pérennès, F., Marmiroli, B., Matteucci, M., Tormen, M., Vaccari, L., Di Fabrizio, E.: Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J. Micromech. Microeng. 16, 473 (2006)

    Article  Google Scholar 

  22. Tormen, M., Businaro, L., Altissimo, M., Romanato, F., Cabrini, S., Perennes, F., Proietti, R., Sun, H.-B., Kawata, S., Di Fabrizio, E.: 3D patterning by means of nanoimprinting. X-ray and two-photon lithography. Microelectron. Eng. 73–74, 535 (2004)

    Article  Google Scholar 

  23. Das, G., Mecarini, F., Gentile, F., De Angelis, F., Kumar, M.H.G., Candeloro, P., Liberale, C., Cuda, G., Di Fabrizio, E.: Nano-patterned SERS substrate: application for protein analysis vs. temperature. Biosens. Bioelectron. 24, 1693 (2009)

    Article  Google Scholar 

  24. Liberale, C., Minzioni, P., Bragheri, F., De Angelis, F., Di Fabrizio, E., Cristiani, I.: Miniaturized all-fibre probe for three dimensional optical trapping and manipulation. Nat. Photonics 1, 723 (2007)

    Article  Google Scholar 

  25. De Angelis, F., Patrini, M., Das, G., Maksymov, I., Galli, M., Businaro, L., Andreani, L.C., Di Fabrizio, E.: A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. Nano Lett. 8, 2321 (2008)

    Article  Google Scholar 

  26. De Angelis, F., Das, G., Candeloro, P., Patrini, M., Galli, M., Bek, A., Lazzarino, M., Maksymov, I., Liberale, C., Andreani, L.C., Di Fabrizio, E.: Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol. 5, 67 (2010)

    Article  Google Scholar 

  27. Cabrini, S., Carpentiero, A., Kumar, R., Businaro, L., Candeloro, P., Prasciolu, M., Gosparini, A., Andreani, C., De Vittorio, M., Stomeo, T., Di Fabrizio, E.: Focused ion beam lithography for two dimensional array structures for photonic applications. Microelectron. Eng. 2005(78–79), 11 (2005)

    Article  Google Scholar 

  28. Stockman, M.I.: Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004)

    Article  Google Scholar 

  29. Lafuma, A., Quéré, D.: Superhydrophobic states. Nat. Mater. 2, 457 (2003)

    Article  Google Scholar 

  30. Accardo, A., Gentile, F., Mecarini, F., De Angelis, F., Burghammer, M., Di Fabrizio, E., Riekel, C.: In situ X-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic PMMA surfaces. Langmuir 26, 15057 (2010)

    Article  Google Scholar 

  31. De Angelis, F., Gentile, F., Mecarini, F., Das, G., Moretti, M., Candeloro, P., Coluccio, M.L., Cojoc, G., Accardo, A., Liberale, C., Zaccaria, R.P., Perozziello, G., Tirinato, L., Toma, A., Cuda, G., Cingolani, R., Di Fabrizio, E.: Breaking the diffusion limit with super hydrophobic delivery of few molecules to plasmonic nanofocusing structures. Nat. Photonics 5, 682 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Toma , Remo Proietti Zaccaria , Roman Krahne or Enzo Di Fabrizio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Toma, A. et al. (2016). Nanostructures for Photonics. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9780-1_235

Download citation

Publish with us

Policies and ethics