Skip to main content

Lie–Scheffers Systems

  • Chapter
  • First Online:
Geometry from Dynamics, Classical and Quantum

Abstract

In 1893, Lie and Scheffers [Lie93] presented a result that has a deep implication regarding the notion of integrability that we are describing, but that has been almost unnoticed since then (for two modern general references see [Ca00, Ca07b] and [CL11]).

If only I knew how to get mathematicians interested in transformation groups and their applications to differential equations. I am certain, absolutely certain, that these theories will some time in the future be recognized as fundamental. When I wish such a recognition sooner, it is partly because then I could accomplish ten times more.

Sophus Lie, Letter to Adolf Mayer, 1884.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lie, S., Scheffers, G.: Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen. Teubner, Leipzig (1893) (Edited and revised by G. Scheffers)

    Google Scholar 

  2. Cariñena, J.F., Grabowski, J., Marmo, G.: Lie-Scheffers Systems: A Geometric Approach. Bibliopolis, Napoli (2000)

    Google Scholar 

  3. Cariñena, J.F., Grabowski, J., Marmo, G.: Superposition rules, Lie theorem, and partial differential equations. Rep. Math. Phys. 60, 237–258 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Cariñena, JF., de Lucas, J.: Lie systems: theory, generalisations, and applications. Dissertationes Mathematicae 479, Institute of Mathematics, Polish Academy of Sciences, Warszawa (2011)

    Google Scholar 

  5. Schwarz, F.: Equivalence classes, symmetries and solutions of linear third-order differential equations. Computing 69, 141–162 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ndogmo, J.C.: A method for the equivalence group and its infinitesimal generators. J. Phys. A: Math. Theor. 41, 102001 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  7. Wei, J., Norman, E.: Lie algebraic solution of linear differential equations. J. Math. Phys. 4, 575–581 (1963)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Wei, J., Norman, E.: On global representations of the solutions of linear differential equations as a product of exponentials. Proc. Amer. Math. Soc. 15, 327–334 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cariñena, J.F., Marmo, G., Nasarre, J.: The nonlinear superposition principle and the Wei-Norman method. Int. J. Mod. Phys. A13, 3601–3627 (1998)

    Article  ADS  Google Scholar 

  10. Cariñena, J.F., Grabowski, J., Ramos, A.: Reduction of time-dependent systems admitting a superposition principle. Act. Appl. Math. 66, 67–87 (2001)

    Article  MATH  Google Scholar 

  11. Cariñena, J.F., Ramos, A.: A new geometric approach to Lie systems and physical applications. Acta Appl. Math. 70, 43–69 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cariñena, J.F., Ramos, A.: Integrability of the Riccati equation from a group theoretical viewpoint. Int. J. Modern Phys. A14, 1935–1951 (1999)

    Article  ADS  Google Scholar 

  13. Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry and quantum mechanics. Phys. Rep. 251, 267–385 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  14. Infeld, L., Hull, T.E.: The factorization method. Rev. Mod. Phys. 23, 21–68 (1951)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Cariñena, J.F., Ramos, A.: Riccati equation, factorization method and shape invariance. Rev. Math. Phys. 12, 1279–1304 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cariñena, J.F., Fernández, D.J., Ramos, A.: Group theoretical approach to the intertwined Hamiltonians. Ann. Phys. 292, 42–66 (2001)

    Article  MATH  ADS  Google Scholar 

  17. Cariñena, J.F., Ramos, A.: The partnership of potentials in Quantum Mechanics and shape invariance. Mod. Phys. Lett. A15, 1079–1088 (2000)

    Article  ADS  Google Scholar 

  18. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21, 467–490 (1968)

    Google Scholar 

  19. Cariñena, J.F., Ibort, L.A.: Geometrical setting for Lax equations associated to dynamical systems. Phys. Lett. 107A, 356–358 (1985)

    Google Scholar 

  20. Cariñena, J.F., Martínez, E.: A new geometric setting for Lax equations. Int. J. Mod. Phys. A9, 4973–4986 (1994)

    Article  ADS  Google Scholar 

  21. Cariñena, J.F., Ibort, L.A.: Non-Noether constants of motion. J. Phys. A: Math. Gen. 16, 1–7 (1983)

    Article  MATH  ADS  Google Scholar 

  22. Ermakov, V.P.: Second-order differential equations. Conditions of complete integrability, Univ. Isz. Kiev Series III 9, 1–25 (1880) (translation by A.O. Harin)

    Google Scholar 

  23. Calogero, F.: Solution of a three body problem in one dimension. J. Math. Phys. 10, 2191–2196 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  24. Perelomov, A.M.: Integrable Systems of Classical Mechanics and Lie Algebras. Birkhauser, Basel (1990)

    Google Scholar 

  25. Chalykh, O.A., Vesselov, A.P.: A remark on rational isochronous potentials. J. Nonlin. Math. Phys. 12(Suppl. 1), 179–183 (2005)

    Article  Google Scholar 

  26. Asorey, M., Cariñena, J.F., Marmo, G., Perelomov, A.M.: Isoperiodic classical systems and their quantum counterparts. Ann. Phys. 322, 1444–1465 (2007)

    Article  MATH  ADS  Google Scholar 

  27. Cariñena, J.F., de Lucas, J.: A nonlinear superposition rule for solutions of the Milne-Pinney equation. Phys. Lett. A372, 5385–5389 (2008)

    Article  ADS  Google Scholar 

  28. Cariñena, J.F., de Lucas, J., Rañada, M.F.: Recent applications of the theory of Lie systems in Ermakov systems. SIGMA 4, 031 (2008)

    Google Scholar 

  29. Cariñena, J.F., de Lucas, J., Sardón, C.: A new Lie systems approach to second-order Riccati equation. Int. J. Geom. Methods Mod. Phys. 9, 1260007 (2012)

    Article  MathSciNet  Google Scholar 

  30. Cariñena, J.F., de Lucas, J.: Superposition rules and second-order Riccati equations. J. Geom. Mech. 3, 1–22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cariñena, J.F., Grabowski, J., Marmo, G.: Some applications in physics of differential equation systems admitting a superposition rule. Rep. Math. Phys. 48, 47–58 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Winternitz, P., Smorodinskii, Y.A., Uhlir, M., Fris, J.: Symmetry groups in classical and Quantum Mechanics. Sov. J. Nucl. Phys. 4, 444–450 (1967)

    MathSciNet  Google Scholar 

  33. Cariñena, J.F., de Lucas, J., Sardón, C.: Lie-Hamilton systems: theory and applications. Int. J. Geom. Methods Mod. Phys. 10, 1350047 (2013)

    Article  MathSciNet  Google Scholar 

  34. Boya, L.J., Cariñena, J.F., Gracia-Bondía, J.M.: Symplectic structure of the Aharonov-Anandan geometric phase. Phys. Lett. 161A, 30–34 (1991)

    Google Scholar 

  35. Wolf, K.B.: On time-dependent quadratic quantum Hamiltonians. SIAM J. Appl. Math. 40, 419–431 (1980)

    Article  Google Scholar 

  36. Fernández, D.J., Mielnik, B.: Controlling quantum motion. J. Math. Phys. 35, 2083–2104 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  37. Lewis Jr, H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458–1473 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  38. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Mécanique Quantique, vol. I. Hermann, Paris (1977)

    Google Scholar 

  39. Cariñena, J.F., de Lucas, J., Rañada, M.F.: A geometric approach to integrability of Abel differential equations. Int. J. Theor. Phys. 50, 2114–2124 (2011)

    Article  MATH  Google Scholar 

  40. Cariñena, J.F., Guha, P., de Lucas, J.: A quasi-Lie schemes approach to second-order Gambier equations. SIGMA 9, 026 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José F. Cariñena .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cariñena, J.F., Ibort, A., Marmo, G., Morandi, G. (2015). Lie–Scheffers Systems. In: Geometry from Dynamics, Classical and Quantum. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9220-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9220-2_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9219-6

  • Online ISBN: 978-94-017-9220-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics