Skip to main content

Life Cycle Assessment to Understand Agriculture-Climate Change Linkages

  • Chapter
  • First Online:
Climate Change and Agriculture Worldwide

Abstract

As one of the most comprehensive environmental assessment methodologies, life cycle assessment enables evaluation of the environmental impacts of anthropogenic activities along a supply chain. Its implementation raises many scientific questions. In the case of tropical cropping systems, researchers are working to understand and model environmental emissions based on the diversity of environments and systems. They are also focusing on the relationship between emissions and impacts. Cropping system life cycle assessments show that the impact on climate change varies by crop, environment and type of practice. Life cycle assessment can help guide production methods so as to reduce their environmental impacts. But the choices are not always clearcut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SETAC: Society of Environmental Toxicology and Chemistry, one of the most important international scientific organizations dealing with structural issues of life cycle assessment (Jolliet et al. 2010).

  2. 2.

    In the remainder of this chapter, references to ‘product’ alone will mean ‘product or service’.

  3. 3.

    CO2-eq means CO2 equivalent, i.e. in this case the sum of all GHG emissions weighted by the global warming potential of the various GHGs. Those potentials are the characterization factors in the IPCC linear model; they reflect, in particular, the fact that not all GHGs last the same length of time in the atmosphere, nor do they all react the same with other atmospheric components. Their contributions to the global greenhouse effect are, accordingly, also variable; for example, 1 kg of N2O is roughly equivalent to 298 kg of CO2.

  4. 4.

    The LCAs reviewed covered 14 products: peaches, apples, bananas, oranges, citrus, cocoa, coconuts, kiwis, coffee, grapes, olive oil, jatropha oil, palm oil and sugar cane. Of the 70 LCAs reviewed, 60 % were partial and only addressed global warming or the energy balance.

  5. 5.

    Roundtable on Sustainable Palm Oil.

  6. 6.

    1.67 kg CO2-eq is equal to the emissions of a car carrying a person for about 11.5 km (Ecoinvent v2.2: 01945 XML).

  7. 7.

    In 2012, flooded rice accounted for some 3 % of the world’s usable arable land http://faostat.fao.org.

  8. 8.

    Irstea: National Research Institute of Science and Technology for Environment and Agriculture; ELSA (Environmental and Sustainability Life Cycle Assessment) is a research group dedicated to life cycle assessment and industrial ecology as they apply to agrobiological processes www1.montpellier.inra.fr/elsa/.

References

  • Adnot J, Marchio D, Rivière P (eds) (2012) Cycle de vie des systèmes énergétiques, Paris, Presses des Mines, 224 p., http://www.pressesdesmines.com/cycles-de-vie-des-systemes-energetiques.html

  • Bellon-Maurel V, Aissani L, Bessou C et al (2013) What scientific issues in life cycle assessment applied to waste and biomass valorization? Editorial. Waste Biomass Valorization 4:377–383. doi:10.1007/s12649-012-9189-4

    Article  Google Scholar 

  • Benoist A, Meneghel Fonseca L, Pirot R (2011) Application of environmental life cycle assessment in West Africa: case study on straight Jatropha oil combustion for electricity generation in Mali. In: 3rd international conference on biofuels in Africa, Ouagadougou, Burkina Faso

    Google Scholar 

  • Bessou C, Basset-Mens C, Tran T, Benoist A (2013a) LCA applied to perennial cropping systems: a review focused on the farm stage. Int J Life Cycle Assess 18:340–361. doi:10.1007/s11367-012-0502-z

    Article  Google Scholar 

  • Bessou C, Lehuger S, Gabrielle B, Mary B (2013b) Using a crop model to account for the effects of local factors on the LCA of sugar beet ethanol in Picardy region, France. Int J Life Cycle Assess 18:24–36. doi:10.1007/s11367-012-0457-0

    Article  CAS  Google Scholar 

  • Bessou C, Chase LDC, Henson IE, Abdul-Manan AN, Canals LMI, Agus F, Sharma M, Chin M (2014) Pilot application of PalmGHG, the roundtable on sustainable palm oil greenhouse gas calculator for oil palm products. J Clean Prod 73:136–145. doi:10.1016/j.jclepro.2013.12.008

    Article  CAS  Google Scholar 

  • Boulard T, Raeppel C, Brun R, Lecompte F, Hayer F, Carmassi G, Gaillard G (2011) Environmental impact of greenhouse tomato production in France. Agron Sustain Dev 31:757–777

    Article  CAS  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002a) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochem Cycles 16:1058

    Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002b) Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochem Cycles 16:11. doi:10.1029/2001GB001812

    Google Scholar 

  • Chapuis A (2014) Sustainable design of oilseed-based biofuel supply chains. The case of Jatropha in Burkina Faso. Doctorat, génie des procédés et de l’environnement, université de Toulouse, École nationale supérieure des Mines d’Albi-Carmaux, 203 p

    Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395

    Article  CAS  Google Scholar 

  • European Union (2009) Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC. Off J Euro Union 140:17–62

    Google Scholar 

  • Feschet P (2014) Analyse de cycle de Vie Sociale. Pour un nouveau cadre conceptuel et théorique (Social life cycle assessment. Towards a new conceptual and theoretical framework). Thèse de doctorat, Sciences économiques, UM1, Montpellier, XXIV-352 p

    Google Scholar 

  • IPCC (2006) Guidelines for national greenhouse gas inventories. 4. Agriculture, forestry and other land use, WMO/UNEP, http://www.GIEC-nggip.iges.or.jp/public/2006gl/index.html

  • ISCC (2010) ISCC 205 GHG emissions calculation methodology and GHG audit, V1.15 ISCC 10-04-19, ISCC System GmbH, Koeln, Germany

    Google Scholar 

  • Jolliet O, Saadé M, Crettaz P, Shaked S (2010) Analyse du cycle de vie: comprendre et réaliser un écobilan. PPUR, Lausanne, Suisse

    Google Scholar 

  • Macombe E, Falque A, Feschet P, Garrabé M, Gillet C, Lagarde V, Loeillet D, Macombe C (2013) ACV sociales. Effects socio-économiques des chaînes de valeurs. FruitTrop, coll. Thema de l’Observatoire des marchés du Cirad, Montpellier

    Google Scholar 

  • Payen S, Basset-Mens C, Follain S, Grünberger O, Marlet S, Núñez M, Perret S (2014) Pass the salt please! From a review to a theoretical framework for integrating salinization impacts in food LCA. In: 9th international conference on LCA in the agri-food sector, 8–10 Oct 2014, San Francisco, USA

    Google Scholar 

  • Payen S, Basset-Mens C, Perret S (2015) LCA of local and imported tomato: does the inclusion of freshwater use impacts change the environmental ranking? J Clean Prod 87:139–148

    Article  Google Scholar 

  • Thanawong K, Perret SR, Basset-Mens C (2014) Ecoefficiency of paddy rice production in Northeastern Thailand: a comparison of rainfed and irrigated cropping systems. J Clean Prod 73:204–217

    Article  Google Scholar 

  • Tran T, Hansupalak N, Piromkraipak P, Tamthirat P, Manitsorasak A, Sriroth K (2014) Biogas reduces the carbon footprint of cassava starch: a comparative assessment with fuel oil. In: Conference on 3rd LCA agrifood, Asia 2014, Bangkok, Thailand

    Google Scholar 

  • Tuomisto HL, Hodge ID, Riordan P, Macdonald DW (2012) Does organic farming reduce environmental impacts? A meta-analysis of European research. J Environ Manage 112:309–320

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Bessou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Éditions Quæ

About this chapter

Cite this chapter

Bessou, C. et al. (2016). Life Cycle Assessment to Understand Agriculture-Climate Change Linkages. In: Torquebiau, E. (eds) Climate Change and Agriculture Worldwide. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7462-8_20

Download citation

Publish with us

Policies and ethics