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Abstract. The aim of this note is to give a proof of Baillon s Theorem on Maximal Regularity. 
Though it is in some sense a negative result (it states that for abstract Cauchy problems maximal 
regularity can occur only in very special cases), it is commonly accepted that it is important. Many 
people believe that its proof is very complicated. This might be due to the fact that Baillon's note 
in the Comptes Rendus is rather short and sometimes difficult to understand. The proof outlined 
here follows basically Baillon's lines. However it is simplified and (hopefully) easier to understand. 
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A strongly continuous semigroup T = (T(t)k~.o on a Banach space X is said to 
have the maximal regularity property (MR) if the following condition is satisfied: 

For every f E C([O, T], X) the convolution T * f which is defined by (T * 
J)(t) := fJT(t - s)f(s) ds is continuously differentiable. 

It is not difficult to verify that whenever (MR) is true for some T > 0, then it 
is true for every T. Thus we can assume without loss of generality that T = 1. 
From the identity 

1 
h((T * J)(t + h) - (T * J)(t)) 

1 1 (h 
= h(T(h) - Id)(T * J)(t) + h io T(s)f(t + h - s) ds 

it follows that for a continuous f we have T * f E Cl([O, 1], X) if and only if 
T * f E C([O, 1], Xl) where Xl is the Banach space D(A) equipped with the 
graph norm. 1 Thus (MR) can be restated as follows: 

1 Note that a function which is differentiable from the right and has a continuous right side 
derivate is actually c 1• 
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For every f E C([O, TJ, X) the convolution T * f is a continuous function 
from [0, T] to Xl. 

The convolution T * f is of interest, since it is the only possible solution of the 
inhomogeneous Cauchy problem (CP) 

u(t) = Au(t) + f(t), u(O) = 0. 

More precisely, whenever u E CI([O, 1], X) nC([O, 1], D(A)) satisfies (CP) then 
u=T*f. 

Trivial examples of semi groups satisfying (MR) are those with a bounded 
generator. Then t f.-...* T(t) is Coo on the interval [0, T] which implies that T * f 
is Coo for every f E C([O, TJ, X). An example of an unbounded generator 
A satisfying (MR) is the multiplication operator on Co, the space of all null 
sequences, defined by A(en) := (-n· en). The corresponding semigroup is 
given by T(t)x = (e-ntxn)nEN for x = (xn)nEN E Co· Given f E C([O, 1], co) 
then f = Un) with fn E C[O, 1] and limn--->cx:> Ilfnll = 0. A straightforward 
calculation shows that T * f =: 9 = (gn), where gn E C[O, 1] is given by 
gn(t) := J~ e-n(t-s) fn(s) ds. It follows easily that get) E D(A) for all t ;::: ° and 
that g: [0, 1] -+ D(A) is continuous at every t > 0. In order to show continuity 
at t = ° we apply the (second) mean value theorem on integrals and obtain 

-ngn(t) = -n lot e-n(t-s) ds· f(en,t) = -(1 - e-nt ) . f(en,t) 

for suitable ~n,t E [0, t]. Then given E > 0, I - ngn(t) I s 1 . Ilfnll < E for 
n ;::: N = N(E) (uniformly in t E [0,1]). Moreover, for n < N = N(E) we have 
I - ngn(t) I s (1 - e-Nt)llfnll < E for t sufficiently small. We conclude that 
IIAg(t)ll-+ ° as t -+ 0, hence g: [0, 1] -+ D(A) is continuous at ° as well. 

In the example mentioned above the choice of the space Co was crucial! As 
a consequence of Baillon's Theorem this cannot be true in V-spaces. In fact, 
the result states that unbounded generators which have (MR) can only exist in 
Banach spaces containing a closed subspace which is isomorphic to Co. We need 
the following characterization of Banach spaces containing Co. 

THEOREM 0.1 A Banach space X contains a closed subspace which is isomor
phic to Co if and only if there exist a sequence (xn) C X and a constant M such 
that 

inf {llxnll} > ° 
nEN 

and Ilxo ±XI ± X2 ± ... ±xnil S M 

for every n E N and all possible choices of signs + or -. (1) 

The proof follows from joint work of C. Bessaga and A. Pelczyfiski [2, Coroll. 
1 and Lemma 3]. We sketch a direct proof in the appendix. 

Another ingredient for the proof is the following result of Hille (cf. [5] or [6, 
2.5.3]). 
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THEOREM 0.2 Let (T(t) be a Co-semigroup on X with generator A. If for 
every x E X the mapping t 1--+ T(t)x is differentiable on (0,00) and lim SUPt-->o t 
IIAT(t)11 < ~ then A is a bounded operator. 

COROLLARY 0.3 If (T( t)) is a semigroup with an unbounded generator A 
satisfying (MR) then ImT(t) C D(A) for t > ° and limsuPt-->o tIIAT(t)11 2:: ~. 

Proof For x E X we consider the function f(t) := T(t)x. Then (T* f)(t) = 
t . T(t)x. By (MR) this function is C l , hence t 1--+ T(t)x is CIon (0,00). 
It follows that ImT(t) C D(A) for t > 0. Moreover, the theorem implies 
limsuPt-->o tIIAT(t)11 2::~. Q.E.D. 

A function f: [0, 1] --+ X is said to be piecewise continuous if f is continuous 
except at finitely many points ° < tl < '" < tn < 1 and such that right
and lefthand limits exist at every point ti. The set of all piecewise continuous 
functions will be denoted by Cpw([O, 1], X). 

We will show that for a semigroup T satisfying (MR) and a piecewise contin
uous f the convolution T * f is a continuous mapping into Xl := (D(A), II·IIA). 

PROPOSITION 0.4 If T satisfies (MR) and f E Cpw([O, 1], X), then T * f E 

C([O, 1], Xd. Moreover, there is a constant C such that 

sup IIA(T* f)(t)11 :S C· sup Ilf(t)11 for all f E Cpw([O, 1], X)(2). 
09:::;1 09:::;1 

Proof We only consider the case where f has one discontinuity at tl say. 
The functions t 1--+ f(t) and t 1--+ f(tl + t) defined on [0, td and (0,1 - td have 
continuous extensions fo and !I say. Then 

{ (T * fo)(t) if t E [0, til, 
(T*f)(t) = (T(t - tI)(T * fO)(tl)) + (T * fI)(t - tl) if t E (tl' 1]. (3) 

It follows that both T * f and A(T * f) are continuous. Thus T * f E C ([0, 1], Xl)' 
First we observe that the mapping f 1--+ T * f is continuous from 

(Cpw([O, l],X), 11·1100) into (C([O, l],X), 11·1100)' In fact this follows from the 
estimate 

II(T * f)(t) II :S lot IIT(t - s)11 Ilf(s)11 ds :S (lol IIT(s)11 dS) Ilflloo. 

The considerations above show that the range of this mapping is contained in 
the Banach space C([O, 1], Xt) which is continuously embedded in C([O, 1], X). 
Thus by the closed graph theorem f 1--+ T * f is continuous from Cpw([O, 1], X) 
into C([O, 1], Xl)' It follows that there is a constant C such that (1) holds. Q.E.D. 

Now we have all the prerequisites in order to prove the main result. 

THEOREM 0.5 (Baillon's Theorem) Let A be the generator of a Co-semigroup 
(T(t)) on a Banach space X satisfying (MR). Then either A is bounded or X 
contains a closed subspace which is isomorphic to Co. 
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Proof We assume that (A, D(A)) is an unbounded generator of a Co-
semigroup (T(t)) on a Banach space X satisfying (MR). In order to prove the 
Theorem we have to show that X contains a sequence (xn) with the properties 
stated in Theorem 0.1. Q.E.D. 

Construction of the Sequence. Because of the Corollary to Theorem 0.2 we 
can find a sequence of positive real numbers (ti)iEN such that 

to:= 1, 
1 

ti < 2i ti-I for every i = 1,2,3, ... , (4) 

and 

for every i = 1,2,3, .... (5) 

Then there are elements Yi EX, IIYillx :s: 1 such that IltiAT(ti)Yillx > de for 
i = 1,2,3, ... and AT(I)yo f 0. From Proposition 0.4 we deduce that for all i 

IltiAT(ti)Yillx = IIA(T * Yi)(ti) IIx :s: C ·llYill :s: C, 
where Yi(t) := T(t)Yi, C := C . sUPO<t<1 IIT(t) II. 

If we define: - -

we have at once 

inf Ilxi II > 0. 
i2':O 

for i = 0, 1, 2, ... , 

(6) 

(7) 

(8) 

It remains to verify the second condition of (1). We therefore choose n E Nand 
Ei with Ei = ± 1 for i = 0, 1, ... n. Defining the following piecewise continuous 
function: 

we obtain 

1 - ti :s: s :s: 1 - ti+ 1 , 

i = 0, ... ,n -1, 
1 - tn :s: s :s: 1, 

(T * 1)(1) = 101 T(1 - s)f(s) ds 

n-I rl - t i+ 1 

= ~ Ei JI-ti T(1 - s)T(s + ti - I)Yi ds 

+ En rl T(1 - s)T(s + tn - I)Yn ds 
JI-tn 

n-I 
= L Ei(ti - ti+I)T(ti)Yi + EntnT(tn)Yn. 

i=O 
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Therefore we get using (6), (7) and the triangle inequality: 

IIEoxo + EIXj + ... + EnXn - A(T * f)(l)llx 
:::; IIEotIAT(l)yo + Elt2AT(tdYl 

+ ... + En-ltnAT(tn-l)Yn-l + Ollx 

= IIEOt1XO + El t2 Xl + ... + En-l ~Xn-lll 
tl tn-l x 

1- 1- 1 - -
:::; 2C + 4C + ... + 2n C :::; C. 

Together with the inequality of Proposition 0.4, 

IIA(T * f)(1)11 :::; Cllfll :::; C· sup IIT(t)11 
099 

we obtain 

IIEoxo + EIXI + ... + Enxnllx 
:::; IIEoxo + EIXI + ... + EnXn 

- A(T * f)(l)llx + IIA(T * f)(1)11 
:::; C + C· sup IIT(t)11 < 00, 

099 

independently of n EN and the choice of Ei = ±1. Q.E.D. 
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A few words to the consequences of Baillon's Theorem. Recall that closed sub
spaces of reflexive Banach spaces are also reflexive. Therefore on reflexive Ba
nach spaces all semigroups satisfying (MR) are uniformly continuous (and there
fore not very interesting). More generally, from the fact that Co is not weakly 
sequentially complete (the sequence (L::i=l ei)nEN (ei the i-th unit vector) is 
weak Cauchy but not weakly convergent), it follows that on weakly sequentially 
complete spaces (MR) can occur only when the generator is bounded. In addition 
to reflexive spaces the Ll-spaces are weakly sequentially complete ([4, IV.8.6]). 
The Sobolev spaces Wp,k can be considered as closed subspaces of products of 
LP -spaces. Hence they are weakly sequentially complete as well. 

For example the semigroup generated by the multiplication operator A(en) = 

(-n· en) is maximal regular on Co but not on fP, 1 :::; p < 00. 

Or the other way around, if you have an unbounded generator on an LP -space 
(1 :::; p < (0), a Sobolev space or a reflexive Banach space (e.g. Hilbert space), 
then there will be always a continuous function f E C([O, TJ, X) such that the 
inhomogeneous Cauchy problem 

du 
dt = Au+ f, 

u(O) = 0 

has no classical solution. 
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Appendix 

In this Appendix we want to give a direct proof of Theorem 0.1. It is based on 
the following lemma on infinite matrices A = (aij)i,jEN' A submatrix of A is 
an infinite matrix B = (bij)i,jEN obtained from A by cancelling some rows and 
the corresponding columns. In other words, there is a subsequence (nj) j EN of 
the natural numbers such that bij = aninj . In the following we consider matrices 
which give rise to bounded linear operators on £1. Thus 

all columns are elements of £1 and 
the £I-norm of the columns is uniformly bounded (*) 

The norm of the induced operator is the supremum of the .el-norm of the columns 
of A. 

LEMMA 0.6 Let A be an infinite matrix satisfying (*). If the diagonal (aii) 
does not converge to zero, then there is a submatrix B of A which induces an 
isomorphism on £1. 

Proof. By assumption there is a subsequence (ni) and 6 > 0 such that 
infiEN{laninil} ~ 6 > O. Thus considering the submatrix defined by (ni) we 
can assume w.l.o.g. that infiEN{laiil} 2: 6 > O. 

Now we show that for every E > 0 there is a sub matrix B of A which satisfies 
Lih Ibijl < E for every j EN. It follows that liB - DII ::; E where D denotes 
the diagonal part of B. In case E < 6 the matrix B is invertible, because its 
diagonal part is invertible with liD-III::; 6-1 and liB - DII ::; E < 6. 

We construct B in two steps. 
1) There is a submatrix C such that Li>j !cijl < ~ for every j. 
2) There is a submatrix B of C such that Li<j Ibijl < ~ for every j. 

Step 1) 

Define nl := 1. Since the first column is £1 there is a subsequence (nl, n12, n13, ... ) 
of N such that L~2lanlill < ~. Define n2 := n12. Since the n~ column is 
.e1 there is a subsequence (nl,n2,n23,n24, ... ) of (nl,n12,n13, ... ) such that 
L~31an2in21 < ~. Define n3 := n23. Proceeding this way one obtains (recur
sively) a subsequence such that the corresponding submatrix C satisfies 
Li>j ICijl < ~ for every j. 

Step 2) 

Let c be a bound for the £1-norm of the columns. If we choose mEN such 
that m . ~ > c, then among the first m rows of B there must be one which 
contains infinitely many elements of absolute value less that ~. (Otherwise there 
are columns which have £I-norm greater than m· ~ > c which is a contradiction). 
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Let nl be such a row and choose a subsequence(nl,n12,n13, ... ) of(nl,m +1, 
m + 2, , ... ) such that Ibnj,nlj I < % for j ~ 2. 

For the same reason as above there is among the 2m rows n12, n13, ... , nl,2m+l 
one which has infinitely many elements of absolute value less than ~. Let n2 be 
such a row and choose a subsequence (n 1, n2, n23, n24, ... ) of (n 1 , n2, n 1 ,2m+2, ... ) 
such that I bn2 ,n2j I < ~ for all j ~ 3. Proceeding this way one obtains (recur
sively) a subsequence such that the corresponding submatrix B of C satisfies 
Ibijl < 2-i- 1E for every j > i. Hence L.i<j Ibijl < L.{;;:f 2-i- 1E < ~ for every 
j. Q.E.D. 

Now we can give the 
Proof of Theorem 0.1. Let (Xn) be sequence in the Banach space X such 

that 6 := infnEN Ilxnll > 0 and Ilxo ±X1 ±X2 ± ... ±xnll :S M for every n E N 
and all possible choices of signs. By the Hahn-Banach theorem there exist linear 
functionals x~ E X' such that 

Ilx~11 = 1 and for all n E N. 

The infinite matrix A = « Xi, xj > )ijEN satisfies the hypotheses of the 

Lemma. In fact, lajjl = Ilxjll ~ 6 and L.~o laijl = L.~o I < Xi,Xj > I 
(L.~o EiXi, xj) where Ei = sgn( < Xi, xj ». It follows that L.i=o laij I :S 
II L.i=o EiXi II . Ilxj II :S M for every n, j E N. 

According to the Lemma we choose a subsequence (ni) which defines an 
invertible submatrix B of A. Let Yi := xni ' Y~ := X~i' 

We define a linear mapping To from the space of all finite sequences rp into X 
by TO(~n) := L.n ~nYn. We claim that To is bounded. In fact, each L.n ~nYn with 
(~n) E rp, 11(~n)11 :S 1 is a convex combination of vectors ±XO±XI ±X2±'" X m. 
Since each of these vectors has norm less than M so has L.n ~nYn. It follows that 
To is bounded and has norm :S M. To can be uniquely extended to a bounded 
linear map T: Co -+ X. 

Furthermore we define 5: £1 -+ X' by 5(Tfn) := L.n TfnY~. Obviously 5 is 
linear and bounded (11511 :S 1) and it is easily verified that the composition 
T' 0 5: £1 -+ X' -+ £1 is represented by the matrix B. Thus T' 05 is invertible 
and therefore its adjoint 5' 0 T" as well. For ~ E Co C goo we have IIT~II = 

IIT"~II ~ 115'11-1115' 0 T"~II ~ 115'11-111(5' oT")-111-111~11. This shows that Tis 
an isomorphism of Co onto a subspace of X. Q.E.D. 
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