Skip to main content

Animal models of autoimmune thyroiditis: recent advances

  • Chapter
Endocrine Autoimmunity and Associated Conditions

Part of the book series: Immunology and Medicine Series ((IMME,volume 27))

Abstract

Since the last review in this series in 1986, which focused on the induced model of murine experimental autoimmune thyroiditis (EAT) for Hashimoto’s thyroidities (HT) [1], there have been major advances in our understanding of the pathogenic and regulatory mechanisms in autoimmune thyroid disease. These advances have stemmed from new knowledge at the cellular and molecular level of T cell development and interactions with other cell types, and techniques applied to gene cloning and sequencing of thyroid autoantigens. In the interim 10 years, there have been several extensive reviews on EAT induced with thyroid antigens, usually thyroglobulin (TG), and spontaneous autoimmune thyroiditis (SAT), arising from selective breeding in chicken and in rodent colonies exhibiting autoimmune diabetes [2–8]. Some recent papers also correlated findings between both animal and human autoimmune thyroid disease [4–6]. This review will concentrate on studies in the last 6–7 years, primarily in the mouse and rat, where major developments have advanced our understanding of autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kong YM. The mouse model of autoimmune thyroid disease. In: McGregor AM, ed. Immunology of Endocrine Diseases. Lancaster, UK: MTP Press Limited; 1986:1–24.

    Google Scholar 

  2. Charreire J. Immune mechanisms in autoimmune thyroiditis. Adv Immunol. 1989;46:263–334.

    PubMed  CAS  Google Scholar 

  3. Kong YM, Lewis M. Animal models of autoimmune endocrine diseases: diabetes and thyroiditis. In: Volpé R, ed. Autoimmune Diseases of the Endocrine System. Boca Raton, FL: CRC Press; 1990:23–50.

    Google Scholar 

  4. Kong YM, Giraldo AA. Experimental autoimmune thyroiditis in the mouse and rat. In: Cohen IR, Miller A, eds. Autoimmune Disease Models: A Guidebook. San Diego: Academic Press; 1994:123–145.

    Google Scholar 

  5. Kong YM. Regulatory mechanisms in autoimmune thyroiditis: recent lessons from a murine model. Fund Clin Immunol. 1994;2:199–213.

    Google Scholar 

  6. Weetman AP, McGregor AM. Autoimmune thyroid disease: further developments in our understanding. Endocr Rev 1994;15:788–830.

    PubMed  CAS  Google Scholar 

  7. Wick G, Brezinschek HP, Hala K, Dietrich H, Wolf H, Kroemer G. The Obese strain of chickens: an animal model with spontaneous autoimmune thyroiditis. Adv Immunol. 1989;47:433–500.

    PubMed  CAS  Google Scholar 

  8. Wick G, Cole R, Dietrich H, Maczek Ch, Muller P-U, Hala K. The obese strain of chickens with spontaneous autoimmune thyroiditis as a model for Hashimoto disease. In: Cohen IR, Miller A, eds. Autoimmune Disease Models: A Guidebook. San Diego: Academic Press; 1994:107–122.

    Google Scholar 

  9. Rothenberg EV. The development of functionally responsive T cells. Adv Immunol. 1992;51:85–214.

    PubMed  CAS  Google Scholar 

  10. De Assis-Paiva HJ, Rayner DC, Roitt IM, Cooke A. Cellular infiltration in induced rat thyroiditis: phenotypic analysis and relationship to genetic restriction. Clin Exp Immunol. 1989;75:106–112.

    PubMed  Google Scholar 

  11. Colle E, Guttmann RD, Seemayer TA. Association of spontaneous thyroiditis with the major histocompatibility complex of the rat. Endocrinology. 1985;116:1243–1247.

    PubMed  CAS  Google Scholar 

  12. Kotzin BL, Leung DYM, Kappler J, Marrack P. Superantigens and their potential role in human disease. Adv Immunol. 1993;54:99–166.

    PubMed  CAS  Google Scholar 

  13. Kong YM, David CS, Lomo, LC et al. Role of mouse and human class II transgenes in susceptibility to and protection against mouse autoimmune thyroiditis. Immunogenetics. 1997;46:312–317.

    PubMed  CAS  Google Scholar 

  14. Kong YM, Lomo LC, Motte RW et al. HLA-DRB1 polymorphism determines susceptibility to autoimmune thyroiditis in transgenic mice: definitive association with HLA-DRB 1*0301 (DR3) gene. J Exp Med. 1996;184:1167–1172.

    PubMed  CAS  Google Scholar 

  15. Krco CJ, Gores A, David CS, Kong YM. Immunogenetic aspects of human thyroglobulin-reactiveT cell lines and hybridomas. J Immunogenet. 1990;17:361–370.

    PubMed  CAS  Google Scholar 

  16. Chronopoulou E, Carayanniotis G H-2Ek expression influences thyroiditis induction by the thyroglobulin peptide (2495–2511). Immunogenetics. 1993;38:150–153.

    PubMed  CAS  Google Scholar 

  17. Zanelli E, Gonzalezgay MA, David CS. Could HLA-DRB1 be the protective locus in rheumatoid arthritis? Immunol Today. 1995;16:274–278.

    PubMed  CAS  Google Scholar 

  18. Kong YM, David CS, Giraldo AA, El Rehewy M, Rose NR. Regulation of autoimmune response to mouse thyroglobulin: influence of H-2D-end genes. J Immunol. 1979;123:15–18.

    PubMed  CAS  Google Scholar 

  19. Creemers P, Rose NR, Kong YM. Experimental autoimmune thyroiditis: in vitro cytotoxic effects of T lymphocytes on thyroid monolayers. J Exp Med. 1983;157:559–571.

    PubMed  CAS  Google Scholar 

  20. Salamero J, Charreire J. Syngeneic sensitization of mouse lymphocytes on monolayers of thyroid epithelial cells. VII. Generation of thyroid-specific cytotoxic effector cells. Cell Immunol. 1985;91:111–118.

    PubMed  CAS  Google Scholar 

  21. Eishi Y, McCullagh P. The relative contributions of immune system and target organ to variation in susceptibility of rats to experimental allergic thyroiditis. Eur J Immunol. 1988;18:657–660.

    PubMed  CAS  Google Scholar 

  22. Kuppers RC, Hu Q, Rose NR. Mouse thyroglobulin: conservation of sequence homology in C-terminal immmunogenic regions of thyroglobulin. Autoimmunity. 1996;23:175–180.

    PubMed  CAS  Google Scholar 

  23. Fuller BE, Giraldo AA, Motte RW et al. T cell receptor Vβ gene usage in experimental autoimmune thyroiditis. Ann NY Acad Sci. 1995;756:450–452.

    PubMed  CAS  Google Scholar 

  24. Lomo LC, Motte RW, Giraldo AA et al. Vβ8.2 transgene expression interferes with development of experimental autoimmune thyroiditis in CBA k/q but not k/k mice. Cell Immunol. 1996;168:297–301.

    PubMed  CAS  Google Scholar 

  25. El Rehewy M, Kong YM, Giraldo AA, Rose NR. Syngeneic thyroglobulin is immunogenic in good responder mice. Eur J Immunol. 1981;11:146–151.

    Google Scholar 

  26. Kong YM, McCormick DJ, Wan Q et al. Primary hormonogenic sites as conserved autoepitopes on thyroglobulin in murine autoimmune thyroiditis: secondary role of iodination. J Immunol. 1995;155:5847–5854.

    PubMed  CAS  Google Scholar 

  27. Chronopoulou E, Carayanniotis G. Identification of a thyroiditogenic sequence within the thyroglobulin molecule. J Immunol. 1992;149:1039–1044.

    PubMed  CAS  Google Scholar 

  28. Carayanniotis G, Chronopoulou E, Rao VP. Distinct genetic pattern of mouse susceptibility to thyroiditis induced by a novel thyroglobulin peptide. Immunogenetics. 1994;39:21–28.

    PubMed  CAS  Google Scholar 

  29. Okayasu I, Kong YM, Rose NR. Effect of castration and sex hormones on experimental autoimmune thyroiditis. Clin Immunol Immunopathol. 1981;20:240–245.

    PubMed  CAS  Google Scholar 

  30. Kuppers RC, Neu N, Rose NR. Animal models of autoimmune thyroid disease. In: Farid NR, ed. Immunogenetics of Endocrine Disorders. New York: Alan R. Liss, Inc.; 1988:111–131.

    Google Scholar 

  31. Okayasu I, Hatakeyama S, Kong YM. Long-term observation and effect of age on induction of experimental autoimmune thyroiditis in susceptible and resistant mice. Clin Immunol Immunopathol. 1989;53:254–267.

    PubMed  CAS  Google Scholar 

  32. Cohen SB, Weetman AR Characterization of different types of experimental autoimmune thyroiditis in the Buffalo strain rat. Clin Exp Immunol. 1987;69:25–32.

    PubMed  CAS  Google Scholar 

  33. Allen EM, Thupari JN. The pathogenicity of spontaneously-occurring thyroglobulin-reactive T lymphocytes from BB/WOR rats. Autoimmunity. 1996;23:35–44.

    PubMed  CAS  Google Scholar 

  34. Bernard NF, Ertug F, Margolese H. High incidence of thyroiditis and anti-thyroid autoantibodies in NOD mice. Diabetes. 1992;41:40–46.

    PubMed  CAS  Google Scholar 

  35. Asamoto H, Oishi M, Akazawa Y, Tochino Y. Histologic and immunologic changes in the thymus and other organs in NOD mice. In: Tarui S, Tochino Y, Nonaka K, eds. Insulitis and Type I Diabetes: Lessons from the NOD Mouse. Tokyo: Academic Press; 1986:61–71.

    Google Scholar 

  36. Penhaie WJ, Young PR. The influence of the normal microbial flora on the susceptibility of rats to experimental autoimmune thyroiditis. Clin Exp Immunol. 1988;72:288–292.

    Google Scholar 

  37. Bhatia SK, Rose NR, Schofield B, Lafond-Walker A, Kuppers RC. Influence of diet on the induction of experimental autoimmune thyroid disease. Proc Soc Exp Biol Med. 1996;213:294–300.

    PubMed  CAS  Google Scholar 

  38. Fuller BE, Giraldo AA, Motte RW, Nabozny GH, David CS, Kong YM. Noninvolvement of Vβ8+ T cells in murine thyroglobulin-induced experimental autoimmune thyroiditis. Cell Immunol. 1994;159:315–322.

    PubMed  CAS  Google Scholar 

  39. McMurray RW, Hoffman RW, Tang H, Braley-Mullen H. T cell receptor Vβ usage in murine experimental autoimmune thyroiditis. Cell Immunol. 1996;172:1–9.

    PubMed  CAS  Google Scholar 

  40. Matsuoka N, Unger P, Ben-Nun A, Graves P, Davies TF. Thyroglobulin-induced murine thyroiditis assessed by intrathyroidal T cell receptor sequencing. J Immunol. 1994;152:2562–2568.

    PubMed  CAS  Google Scholar 

  41. Matsuoka N, Bernard N, Concepcion ES, Graves PN, Ben-Nun A, Davies TF. T-cell receptor V region β-chain gene expression in the autoimmune thyroiditis of non-obese diabetic mice. J Immunol. 1993;151:1691–1701.

    PubMed  CAS  Google Scholar 

  42. Nakashima M, Kong YM, Davies TF. The role of T cells expressing TcR Vβ13 in autoimmune thyroiditis induced by transfer of mouse thyroglobulin-activated lymphocytes: identification of two common CDR3 motifs. Clin Immunol Immunopathol. 1996;80:204–210.

    PubMed  CAS  Google Scholar 

  43. Kong YM, Waldmann H, Cobbold S, Giraldo AA, Fuller BE, Simon LL. Pathogenic mechanisms in murine autoimmune thyroiditis: short-and long-term effects of in vivo depletion of CD4+ and CD8+ cells. Clin Exp Immunol. 1989;77:428–433.

    PubMed  CAS  Google Scholar 

  44. Creemers P, Giraldo AA, Rose NR, Kong YM. T-cell subsets in the thyroids of mice developing autoimmune thyroiditis. Cell Immunol. 1984;87:692–697.

    PubMed  CAS  Google Scholar 

  45. Conaway DH, Giraldo AA, David CS, Kong YM. In situ kinetic analysis of thyroid lymphocyte infiltrate in mice developing experimental autoimmune thyroiditis. Clin Immunol Immunopathol. 1989;53:346–353.

    PubMed  CAS  Google Scholar 

  46. Cohen SB, Dijkstra CD, Weetman AP. Sequential analysis of experimental autoimmune thyroiditis induced by neonatal thymectomy in the Buffalo strain rat. Cell Immunol. 1988;114:126–136.

    PubMed  CAS  Google Scholar 

  47. Conaway DH, Giraldo AA, David CS, Kong YM. In situ analysis of T cell subset composition in experimental autoimmune thyroiditis after adoptive transfer of activated spleen cells. Cell Immunol. 1990;125:247–253.

    PubMed  CAS  Google Scholar 

  48. McMurray RW, Sharp GC, Braley-Mullen H. Intrathyroidal cell phenotype in murine lymphocytic and granulomatous experimental autoimmune thyroiditis. Autoimmunity. 1994;18:93–102.

    PubMed  CAS  Google Scholar 

  49. Braley-Mullen H, Sharp GC, Bickel JT, Kyriakos M. Induction of severe granulomatous experimental autoimmune thyroiditis in mice by effector cells activated in the presence of anti-interleukin 2 receptor antibody. J Exp Med. 1991;173:899–912.

    PubMed  CAS  Google Scholar 

  50. Stull SJ, Sharp GC, Kyriakos M, Bickel JT, Braley-Mullen H. Induction of granulomatous experimental autoimmune thyroiditis in mice with in vitro activated effector T cells and anti-IFN-γ antibody. J Immunol. 1992;149:2219–2226.

    PubMed  CAS  Google Scholar 

  51. Vladutiu AO. Experimental autoimmune thyroiditis in mice chronically treated from birth with anti-IgM antibodies. Cell Immunol. 1989;121:49–59.

    PubMed  CAS  Google Scholar 

  52. Sugihara S, Fujiwara H, Niimi H, Shearer GM. Self-thyroid epithelial cell (TEC)-reactive CD8+ T cell lines/clones derived from autoimmune thyroiditis lesions. J Immunol. 1995;155:1619–1628.

    PubMed  CAS  Google Scholar 

  53. Sugihara S, Fujiwara H, Shearer GM. Autoimmune thyroiditis induced in mice depleted of particular T cell subsets: characterization of thyroiditis-inducing T cell lines and clones derived from thyroid lesions. J Immunol. 1993;150:683–694.

    PubMed  CAS  Google Scholar 

  54. Tang H, Mignon-Godefroy K, Meroni PL, Garotta G, Charreire J, Nicoletti F. The effects of a monoclonal antibody to interferon-gamma on experimental autoimmune thyroiditis (EAT): prevention of disease and decrease of EAT-specific T cells. Eur J Immunol. 1993;23:275–278.

    PubMed  CAS  Google Scholar 

  55. Nabozny GH, Kong YM. Circumvention of the induction of resistance in murine experimental autoimmune thyroiditis by recombinant IL-Iβ. J Immunol. 1992;149:1086–1092.

    PubMed  CAS  Google Scholar 

  56. Flynn JC, Conaway DH, Cobbold S, Waldmann H, Kong YM. Depletion of L3T4+ and Lyt-2+ cells by rat monoclonal antibodies alters the development of adoptively transferred experimental autoimmune thyroiditis. Cell Immunol. 1989;122:377–390.

    PubMed  CAS  Google Scholar 

  57. Lomo LC, Zhang FS, Giraldo AA, David CS, Kong YM. Flexibility of the thyroiditogenic T cell repertoire for murine autoimmune thyroiditis in B2m /-and TCR-Vβc mice. Autoimmunity. 1997;[in press].

    Google Scholar 

  58. Flynn JC, Kong YM. In vivo evidence for CD4+ and CD8+ suppressor T cells in vaccination-induced suppression of murine experimental autoimmune thyroiditis. Clin Immunol Immunopathol. 1991;60:484–494.

    PubMed  CAS  Google Scholar 

  59. Braley-Mullen H, Sharp GC, Kyriakos M. Differential requirement for autoantibody-producing B cells for induction of lymphocytic versus granulomatous experimental auto-immunue thyroiditis. J Immunol. 1994;152:307–314.

    PubMed  CAS  Google Scholar 

  60. Braley-Mullen H, McMurray RW, Sharp GC, Kyriakos M. Regulation of the induction and resolution of granulomatous experimental autoimmune thyroiditis in mice by CD8+ T cells. Cell Immunol. 1994;153:492–504.

    PubMed  CAS  Google Scholar 

  61. Fuller BE, Giraldo AA, Waldmann H, Cobbold SP, Kong YM. Depletion of CD4+ and CD8+ cells eliminates immunologic memory of thyroiditogenicity in murine experimental autoimmune thyroiditis. Autoimmunity. 1994;19:161–168.

    PubMed  CAS  Google Scholar 

  62. Mignon-Godefroy K, Rott O, Brazillet M-P, Charreire J. Curative and protective effects of IL-10 in experimental autoimmune thyroiditis (EAT): evidence for IL-10-enhanced cell death in EAT. J Immunol. 1995;154:6634–6643.

    PubMed  CAS  Google Scholar 

  63. Metcalfe RA, Tandon N, Tamatani T, Miyasaka M, Weetman AP. Adhesion molecule monoclonal antibodies inhibit experimental autoimmune thyroiditis. Immunology. 1993;80:493–497.

    PubMed  CAS  Google Scholar 

  64. Tamura K, Woo J, Murase N, Carrieri G, Nalesnik MA, Thomson AW. Suppression of autoimmune thyroid disease by FK 506: influence on thyroid-infiltrating cells, adhesion molecule expression and anti-thyroglobulin antibody production. Clin Exp Immunol. 1993;91:368–375.

    PubMed  CAS  Google Scholar 

  65. McMurray RW, Tang H, Braley-Mullen H. The role of a4 integrin and intercellular adhesion molecule-1 (ICAM-1) in murine experimental autoimmune thyroiditis. Autoimmunity. 1996;23:9–23.

    PubMed  CAS  Google Scholar 

  66. Lewis M, Giraldo AA, Kong YM. Resistance to experimental autoimmune thyroiditis induced by physiologic manipulation of thyroglobulin level. Clin Immunol. Immunopathol. 1987;45:92–104.

    PubMed  CAS  Google Scholar 

  67. Lewis M, Fuller BE, Giraldo AA, Kong YM. Resistance to experimental autoimmune thyroiditis is correlated with the duration of raised thyroglobulin levels. Clin Immunol Immunopathol. 1992;64:197–204.

    PubMed  CAS  Google Scholar 

  68. Fuller BE, Okayasu I, Simon LL, Giraldo AA, Kong YM. Characterization of resistance to murine experimental autoimmune thyroiditis: duration and afferent action of thyroglobulin-and TSH-induced suppression. Clin Immunol Immunopathol. 1993;69:60–68.

    PubMed  CAS  Google Scholar 

  69. Kong YM, Okayasu I, Giraldo AA et al. Tolerance to thyroglobulin by activating suppressor mechanisms. Ann NY Acad Sci. 1982;392:191–209.

    PubMed  CAS  Google Scholar 

  70. Parish NM, Rayner D, Cooke A, Roitt IM. An investigation of the nature of induced suppression to experimental autoimmune thyroiditis. Immunology. 1988;63:199–203.

    PubMed  CAS  Google Scholar 

  71. Kong YM, Giraldo AA, Waldmann H, Cobbold SP, Fuller BE. Resistance to experimental autoimmune thyroiditis: L3T4+ cells as mediators of both thyroglobulin-activated and TSH-induced suppression. Clin Immunol Immunopathol. 1989;51:38–54.

    PubMed  CAS  Google Scholar 

  72. Guimaraes VC, Quintans J, Fisfalen M-E et al. Immunosuppression of thyroiditis. Endocrinology. 1996;137:2199–2207.

    PubMed  CAS  Google Scholar 

  73. Peterson KE, Braley-Mullen H. Suppression of murine experimental autoimmune thyroiditis by oral administration of porcine thyroglobulin. Cell Immunol. 1995;166:123–130.

    PubMed  CAS  Google Scholar 

  74. Nabozny GH, Simon LL, Kong YM. Suppression in experimental autoimmune thyroiditis: the role of unique and shared determinants on mouse thyroglobulin in self-tolerance. Cell Immunol. 1990;131:140–149.

    PubMed  CAS  Google Scholar 

  75. Nabozny GH. Functional characteristics and autoantigenic requirements of CD4+ suppressor T cells in murine experimental autoimmune thyroiditis. Ph.D. Dissertation, Wayne State University, 1991.

    Google Scholar 

  76. Parish NM, Roitt IM, Cooke A. Phenotypic characteristics of cells involved in induced suppression to murine experimental autoimmune thyroiditis. Eur J Immunol. 1988;18:1463–1467.

    PubMed  CAS  Google Scholar 

  77. Sad S, Mosmann TR. Single IL-2-secreting precursor CD4 T cell can develop into either Thl or Th2 cytokine secretion phenotype. J Immunol. 1994;153:3514–3522.

    PubMed  CAS  Google Scholar 

  78. Nabozny GH, Cobbold SP, Waldmann H, Kong YM. Suppression in murine experimental autoimmune thyroiditis: in vivo inhibition of CD4+ T cell-mediated resistance by a nondepleting rat CD4 monoclonal antibody. Cell Immunol. 1991;138:185–196.

    PubMed  CAS  Google Scholar 

  79. Hutchings PR, Cooke A, Dawe K, Waldmann H, Roitt IM. Active suppression induced by anti-CD4. Eur J Immunol. 1993;23:965–968.

    PubMed  CAS  Google Scholar 

  80. Mignon-Godefroy K, Brazillet M-P, Rott O, Charreire J. Distinctive modulation by IL-4 and IL-10 of the effector function of murine thyroglobulin-primed cells in ‘transfer-experimental autoimmune thyroiditis’. Cell Immunol. 1995;162:171–177.

    PubMed  CAS  Google Scholar 

  81. Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance;deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med. 1985;161:72–87.

    PubMed  CAS  Google Scholar 

  82. Sakaguchi S, Sakaguchi N. Thymus and autoimmunity: capacity of the normal thymus to produce pathogenic self-reactive T cells and conditions required for their induction of autoimmune disease. J Exp Med. 1990;172:537–545.

    PubMed  CAS  Google Scholar 

  83. Sugihara S, Izumi Y, Yoshioka T et al. Autoimmune thyroiditis induced in mice depleted of particular T cell subsets. I. Requirement of Lyt-ldull L3T4bright normal T cells for the induction of thyroiditis. J Immunol. 1988;141:105–113.

    PubMed  CAS  Google Scholar 

  84. Kojima A, Tanaka-Kojima Y, Sakakura T, Nishizuka Y. Spontaneous development of autoimmune thyroiditis in neonatally thymectomized mice. Lab Invest. 1976;34:550–557.

    PubMed  CAS  Google Scholar 

  85. Penhale WJ, Farmer A, Irvine WJ. Thyroiditis in T cell-depleted rats: influence of strain, radiation dose, adjuvants and antilymphocyte serum. Clin Exp Immunol. 1975;21:362–375.

    PubMed  CAS  Google Scholar 

  86. Maron R, Zerubavel R, Friedman A, Cohen IR. T lymphocyte line specific for thyroglobulin produces or vaccinates against autoimmune thyroiditis in mice. J Immunol. 1983;131:2316–2322.

    PubMed  CAS  Google Scholar 

  87. Remy J-J, Texier B, Chiocchia G, Charreire J. Characteristics of cytotoxic thyroglobulin-specificT cell hybridomas. J Immunol. 1989;142:1129–1133.

    PubMed  CAS  Google Scholar 

  88. Nabozny GH, Flynn JC, Kong YM. Synergism between mouse thyroglobulin-and vaccination-induced suppressor mechanisms in murine experimental autoimmune thyroiditis. Cell Immunol. 1991;136:340–348.

    PubMed  CAS  Google Scholar 

  89. Roubaty C, Bedin C, Charreire J. Prevention of experimental autoimmune thyroiditis through the anti-idiotypic network. J Immunol. 1990;144:2167–2172.

    PubMed  CAS  Google Scholar 

  90. Tang H, Bedin C, Texier B, Charreire J. Autoantibody specific for a thyroglobulin epitope inducing experimental autoimmune thyroiditis or its anti-idiotype correlates with the disease. Eur J Immunol. 1990;20:1535–1539.

    PubMed  CAS  Google Scholar 

  91. Rasooly L, Burek CL, Rose NR. Iodine-induced autoimmune thyroiditis in NOD-H2h4 mice. Clin Immunol Immunopathol. 1996;81:287–292.

    PubMed  CAS  Google Scholar 

  92. Simon LL, Justen JM, Giraldo AA, Krco CJ, Kong YM. Activation of cytotoxic T cells and effector cells in experimental autoimmune thyroiditis by shared determinants of mouse and human thyroglobulins. Clin Immunol Immunopathol. 1986;39:345–356.

    PubMed  CAS  Google Scholar 

  93. Texier B, Bédin C, Tang H, Camoin L, Laurent-Winter C, Charreire J. Characterization and sequencing of a 40-amino-acid peptide from human thyroglobulin inducing experimental autoimmune thyroiditis. J Immunol. 1992;148:3405–3411.

    PubMed  CAS  Google Scholar 

  94. Hutchings PR, Cooke A, Dawe K, et al. A thyroxine-containing peptide can induce murine experimental autoimmune thyroiditis. J Exp Med. 1992;175:869–872.

    PubMed  CAS  Google Scholar 

  95. Champion BR, Rayner DC, Byfield PGH, Page KR, Chan CTJ, Roitt IM. Critical role of iodination for T cell recognition of thyroglobulin in experimental murine thyroid autoimmunity. J Immunol. 1987;139:3665–3670.

    PubMed  CAS  Google Scholar 

  96. Sundick RS, Herdegen DM, Brown TR, Bagchi N. The incorporation of dietary iodine into thyroglobulin increases its immunogenicity. Endocrinology. 1987;120:2078–2084.

    PubMed  CAS  Google Scholar 

  97. Allen EM, Thupari JN. Thyroglobulin-reactive T lymphocytes in thyroiditis-prone BB/Wor rats. J Endocrinol Invest. 1995;18:45–49.

    PubMed  CAS  Google Scholar 

  98. Xiao S, Dorris ML, Rawitch AB, Taurog A. Selectivity in tyrosyl iodination sites in human thyroglobulin. Arch Biochem Biophys. 1996;334:284–294.

    PubMed  CAS  Google Scholar 

  99. Okayasu I, Hatakeyama S, Tanaka Y, Sakurai T, Hoshi K, Lewis PD. Is focal chronic autoimmune thyroiditis an age-related disease? Differences in incidence and severity between Japanese and British. J Pathol. 1991;163:257–264.

    PubMed  CAS  Google Scholar 

  100. Okayasu I, Hara Y, Nakamura K, Rose NR. Racial and age-related differences in incidence and severity of focal autoimmune thyroiditis. Am J Clin Pathol. 1994;101:698–702.

    PubMed  CAS  Google Scholar 

  101. Hoshioka A, Kohno Y, Katsuki T et al. A common T-cell epitope between human thyroglobulin and human thyroid peroxidase is related to murine experimental autoimmune thyroiditis. Immunol Lett. 1993;37:235–239.

    PubMed  CAS  Google Scholar 

  102. Rao VP, Balasa B, Carayanniotis G. Mapping of thyroglobulin epitopes: presentation of a 9mer pathogenic peptide by different mouse MHC class II isotypes. Immunogenetics. 1994;40:352–359.

    PubMed  CAS  Google Scholar 

  103. Dawe KI, Hutchings PR, Geysen M, Champion BR, Cooke A, Roitt IM. Unique role of thyroxine in T cell recognition of a pathogenic peptide in experimental autoimmune thyroiditis. Eur J Immunol. 1996;26:768–772.

    PubMed  CAS  Google Scholar 

  104. Wan Q, Motte RW, McCormick DJ et al. Primary hormonogenic sites as conserved autoepitopes on thyroglobulin in murine autoimmune thyroiditis: role of MHC class II. Clin Immunol Immunopathol. 1997;85:187–194.

    PubMed  CAS  Google Scholar 

  105. Kotani T, Umeki K, Yagihashi S, Hirai K, Ohtaki S. Identification of thyroiditogenic epitope on porcine thyroid peroxidase for C57BL/6 mice. J Immunol. 1992;148:2084–2089.

    PubMed  CAS  Google Scholar 

  106. Marion S, Braun JM, Ropars A, Kohn LD, Charreire J. Induction of autoimmunity by immunization of mice with human thyrotropin receptor. Cell Immunol. 1994;158:329–341.

    PubMed  CAS  Google Scholar 

  107. Costagliola S, Many M-C, Stalmans-Falys M, Vassart G, Ludgate M. Transfer of thyroiditis, with syngeneic spleen cells sensitized with the human thyrotropin receptor, to naive BALB/c and NOD mice. Endocrinology. 1996;137:4637–4643.

    PubMed  CAS  Google Scholar 

  108. Carayanniotis G, Huang GC, Nicholson LB et al. Unaltered thyroid function in mice responding to highly immunogenic thyrotropin receptor: implications for the development of a mouse model for Graves’ disease. Clin Exp Immunol. 1995;99:294–302.

    PubMed  CAS  Google Scholar 

  109. Wagle NM, Patibandla, SA, Dallas, JS, Morris, JC, Prabhakar, BS. Thyrotropin receptor-specific antibodies in BALB/cJ mice with experimental hyperthyroxinemia show a restricted binding specificity and belong to the immunoglobulin G1 subclass. Endocrinology. 1995;136:3461–3469.

    PubMed  CAS  Google Scholar 

  110. Vlase H, Nakashima M, Graves PN, Tomer Y, Morris JC, Davies TF. Defining the major antibody epitopes on the human thyrotropin receptor in immunized mice: evidence for intramolecular epitope spreading. Endocrinology. 1995;136:4415–4423.

    PubMed  CAS  Google Scholar 

  111. Volpé R, Kasuga Y, Akasu F et al. The use of the severe combined immunodeficient mouse and the athymic ‘nude’ mouse as models for the study of human autoimmune thyroid disease. Clin Immunol Immunopathol. 1993;67:93–99.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kong, Y.M. (1998). Animal models of autoimmune thyroiditis: recent advances. In: Weetman, A.P. (eds) Endocrine Autoimmunity and Associated Conditions. Immunology and Medicine Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5044-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5044-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6118-6

  • Online ISBN: 978-94-011-5044-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics