Skip to main content

Experimental Techniques in the Diamond Anvil Cell

  • Chapter
High Pressure Molecular Science

Part of the book series: NATO Science Series ((NSSE,volume 358))

  • 503 Accesses

Abstract

The operating principles of diamond-anvil high pressure cells are reviewed, with particular attention to the implications for design and construction. The diamond culets and gasket generate the pressure, and their behaviour dictates the requirements for the rest of the cell. The axial alignment mechanism is crucial, while tilt alignment is less important. The implication for piston-cylinder designs is that the clearance of the piston in the bore is critical, while the length of the piston is not. Good practice in the design of drive mechanisms is discussed. Finally, we consider alternatives to the standard piston-cylinder mechanism. Flexure movements, and their basic design rules are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Eremets, M.I. (1996) High Pressure Experimental Methods, Oxford University Press, Oxford.

    Google Scholar 

  2. 2. Schroeder, W., and Webster, D.A. (1949) Press-forging thin sections: Effects of friction, area and thickness on pressures required, J. Appl. Mech. 16, 279–294.

    Google Scholar 

  3. 3. Dunstan, D.J. (1989) Theory of the gasket in diamond anvil high-pressure cells, Rev. Sci. Instrum. 60, 3789–3795.

    Article  Google Scholar 

  4. 4. Euler, L. (1744) Methodus inveniendi linea curvos maximi minimive proprieatare gaudentes, Lausanne.

    Google Scholar 

  5. 5. Besson, J.M., and Pinceaux, J.P. (1979) Melting of helium at room temperature and high pressure, Science 206, 1073–1075.

    Article  CAS  Google Scholar 

  6. 6. Eremets, M.I., Krasnovskij, O.A., Struzhkin, V.V., Timofeev, Yu. A., and Shirokov, A.M. (1990) Method of low-temperature optical measurements with diamond anvil cells, High Pressure Research 5, 880–884.

    Article  Google Scholar 

  7. 7. Piermarini, G.J., Block, S., and Barnett, J.S. (1973) Hydrostatic limits in liquids and solids to 100 kbar, J. Appl. Phys. 44, 5377–5382.

    Article  CAS  Google Scholar 

  8. 8. Fujishiro, I., Piermarini, G.J., Block, S., and Munro, R.G. (1982) Viscosities and glass transition pressures in the methanol-ethanol-water system, Proc. 8th AIRAPT Conf., Uppsala, ed. CM. Backman, T. Johannisson and L. Temer, Vol.2 pp. 608–611.

    Google Scholar 

  9. 9. Spain, I.L., and Dunstan, D.J. (1989) The technology of diamond anvil high pressure cells: II. Operation and use, J. Phys. E: Sci. Instrum. 22, 923–933.

    Article  CAS  Google Scholar 

  10. 10. Fujishiro, I., and Nakamura, Y. (1987) Viscosity measurements under high-pressure by diamond anvil cell, J. Jap. Soc. Lubrication Engineers 32, 401–404.

    Google Scholar 

  11. 11. King, H.E., Herbolzheimer, E., and Cook, R.L. (1992), The diamond-anvil cell as a high-pressure viscometer, J. Appl. Phys. 71, 2071–2081.

    Article  CAS  Google Scholar 

  12. 12. Cook, R.L., Herbst, C.A., and King, H.E. (1993) High-pressure viscosity of glass-forming liquids measured by the centrifugal force diamond anvil cell viscometer, J. Phys. Chem. 97, 2355–2361.

    Article  CAS  Google Scholar 

  13. 13. Frogley,M.D. (1998) this conference.

    Google Scholar 

  14. 14. Whitaker, M.F., and Dunstan, D.J. (1998) Raman spectroscopy of GaAs and InGaAs under pressure, J. Phys. Cond. Matter (submitted).

    Google Scholar 

  15. 15. Besson, J.M., Itié, J.P., Polian, A., Weill, G., Mansot J.L., and Gonzalez, J (1991) High-pressure phase-transition and phase-diagram of gallium-arsenide, Phys. Rev. B 44, 4214–4234.

    Article  CAS  Google Scholar 

  16. 16. Adams, D.M. (1998) private communication.

    Google Scholar 

  17. 17. Adams, D.M., and Shaw, A.C. (1982) A computer-aided design study of the behaviour of diamond anvils under stress, J. Phys. D 15, 1609–1635.

    Article  CAS  Google Scholar 

  18. 18. Dunstan, D.J. (1991) Soldering diamonds into the diamond anvil cell, Rev. Sci. Instrum. 62, 1660–1661.

    Article  CAS  Google Scholar 

  19. 19. Dunstan, D.J., and Spain, I.L. (1989) The technology of diamond anvil high pressure cells I. Principles, design and construction, J. Phys. E: Sci. Instrum 22, 913–923.

    Article  CAS  Google Scholar 

  20. 20. Dunstan, D.J., and Schemer, W. (1988) A miniature cryogenic diamond anvil high pressure cell, Rev. Sci. Instrum. 59, 627–630.

    Article  CAS  Google Scholar 

  21. 21. Merrill, L., and Bassett, W.A. (1974) Miniature diamond anvil pressure cell for single crystal x-ray diffracon studies, Rev. Sci. Instrum. 45, 290–294.

    Article  Google Scholar 

  22. 22. Geary, P.J. (1961), Flexure Devices. Pivots, Movements, Suspensions, British Scientific Instruments Research Association, Chislehurst.

    Google Scholar 

  23. 23. Trylinski, T. (1971) Fine Mechanisms and Precision Instruments, Pergamon Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dunstan, D.J. (1999). Experimental Techniques in the Diamond Anvil Cell. In: Winter, R., Jonas, J. (eds) High Pressure Molecular Science. NATO Science Series, vol 358. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4669-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4669-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5807-7

  • Online ISBN: 978-94-011-4669-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics