Skip to main content

Dimensionality of Stable and Unstable Directions in the Gravitational N-Boby Problem

  • Conference paper
Impact of Modern Dynamics in Astronomy
  • 181 Accesses

Abstract

The gravitational n—body problem is chaotic. Phase trajectories that start very near each other separate rapidly. The rate looks exponential over long times. At any instant, trajectories separated in certain directions move apart rapidly (unstable directions), while those separated in other directions stay about the same (stable directions). Unstable directions lie along eigenvectors that correspond to positive eigenvalues of the matrix of force gradients. The number of positive eigenvalues of that matrix gives the dimensionality of stable regions. This number has been studied numerically in a series of 100—body integrations. It continues to change as long as the integration continues because the matrix changes extremely rapidly. On average, there are about 1.2n unstable directions out of 3n. Issues of dimensionality arise when the tools of ergodic studies are brought to bear on the problem of trajectory separation. A method of estimating the rate of trajectory separation based on matrix descriptions is presented in this note. Severe approximations are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, V. I. and A. Avez: 1968, Ergodic Problems of Classical Mechanics. New York: W. A. Benjamin.

    Google Scholar 

  • Contopoulos, G. and N. Voglis: 1996, ‘Spectra of Stretching Numbers and Helicity Angles in Dynamical Systems’. Celest. Mech. & Dyn. Astron 64, 1–20.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Goodman, J., D. C. Heggie, and P. Hut: 1993, ‘On the exponential instability of N-body systems’. ApJ 415, 715–733, Fiche 196-F11.

    Article  ADS  Google Scholar 

  • Gurzadyan, V. G. and G. K. Sawidy: 1986, ‘Collective Relaxation of Stellar Systems’. A&A 160, 203–210.

    ADS  MATH  Google Scholar 

  • Kandrup, H. E.: 1990, ‘Divergence of nearby trajectories for the gravitational N-body problem’. ApJ 364, 420–425, Fiche 201-B13.

    Article  ADS  Google Scholar 

  • Kandrup, H. E., M. E. Mahon, and H. Smith, Jr.: 1994, ‘On the sensitivity of the N—body problem toward small changes in initial conditions. IV’. ApJ 428, 458–465, Fiche 135-G12.

    Article  ADS  Google Scholar 

  • Kandrup, H. E. and H. Smith, Jr.: 1991, ‘On the sensitivity of the N-body problem to small changes in initial conditions’. ApJ 374, 255–265, Fiche 101-C9.

    Article  MathSciNet  ADS  Google Scholar 

  • Kandrup, H. E., H. Smith, Jr., and D. E. Willmes: 1992, ‘On the sensitivity of the N—body problem to small changes in initial conditions. ET. ApJ 399, 627–633, Fiche 205-F9.

    Article  ADS  Google Scholar 

  • Krylov, N. S.: 1979, Works on the Foundations of Statistical Physics. Princeton, N. J.: Princeton University Press.

    Google Scholar 

  • Lorenz, E. N.: 1963, ‘Deterministic Nonperiodic Flow’. J. Atmos. Sci. 20, 130.

    Article  ADS  Google Scholar 

  • Miller, R. H.: 1964, ‘Irreversibility in Small Stellar Dynamical Systems’. ApJ 140, 250–256.

    Article  ADS  Google Scholar 

  • Miller, R. H.: 1966, ‘Polarization of the Stellar Dynamical Medium’. ApJ 146, 831–837.

    Article  ADS  Google Scholar 

  • Miller, R. H.: 1971, ‘Experimental Studies of the Numerical Stability of the Gravitational n-Body Problem’. J. Comp. Phys. 8, 449–463.

    Article  ADS  MATH  Google Scholar 

  • Miller, R. H.: 1972, ‘A Matrix Eigenvalue Problem’. Unpublished Report, Section B in ICR Quarterly Report No. 33.

    Google Scholar 

  • Miller, R. H.: 1974, ‘Numerical Difficulties with the Gravitational n-Body Problem’. In: D. G. Bettis (ed.): Proceedings of the Conference on the Numerical Solution of Ordinary Differential Equations. Berlin, pp. 260–275. Vol. 362 of Lecture Notes in Mathematics.

    Google Scholar 

  • Quinlan, G. D. and S. Tremaine: 1992, ‘On the reliability of gravitational N-body integrations’. MNRAS 259, 505–518.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Miller, R.H. (1999). Dimensionality of Stable and Unstable Directions in the Gravitational N-Boby Problem. In: Henrard, J., Ferraz-Mello, S. (eds) Impact of Modern Dynamics in Astronomy. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4527-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4527-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5930-5

  • Online ISBN: 978-94-011-4527-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics