Skip to main content

Meta-Carbonatites in the Metamorphic Series Below the Semail Ophiolite in the Dibba Zone, Northern Oman Mountains

  • Conference paper

Part of the book series: Petrology and Structural Geology ((PESG,volume 5))

Abstract

Within the metamorphic series below the Semail Ophiolite, meta-carbonatites occur in a meta-volcanic unit in the Dibba region of the United Arab Emirates (UAE). The meta-carbonatites occur as flows, sills or constituents of meta-tuffites. An intimate association with alkaline basaltic meta-pillow lavas, meta-hyaloclastites, meta-pillow breccias, meta-tuffites, meta-radiolarian cherts and meta-siliceous carbonates can be observed. The succession represents a suite of subaerial and subaquatic volcanic rocks deposited together with deep sea sediments.

The meta-carbonatites are geochemically characterized by high P205 contents and Ce, La and Nd contents between 500 ppm and 15000 ppm. Compared to N-type MORB, these rocks are strongly enriched in LIL-elements. Chondrite normalized REE patterns show a strong enrichment in light REE compared to heavy REE. With the exception of the meta-tuffites, where orthite is the major REE carrying phase, the REE are favouredly enriched in apatite. The initial 87Sr/86Sr ratios between 0.7037 and 0.7043 confirm a mantle source for the analyzed meta-carbonatites. The Sm-Nd isotope data reflect ∈Nd(T) values below those commonly observed in magmatic rocks deriving from depleted mantle sources and thus imply a source in a low ∈Nd subcontinental mantle. A comparative sedimentary carbonate sample yields ∈Sr—∈Nd characteristics strongly differing from the meta-carbonatites and, furthermore, indicates the presence of a 1.68 Ga old source region.The meta-volcanics associated with the meta-carbonatites are considered to be the metamorphic equivalents of the mid-Triassic non-metamorphic alkaline volcanic rocks from the Haybi complex and the Umar group. They probably represent magmas of volcanism related to the Triassic rifting of the Neotethys along the passive eastern margins of the Arabian platform. They possibly formed in a transition zone of continental to oceanic crust similar to the situation of the Canary Islands, where carbonatites are encountered at the margin of the African continent.(1980) or the Umar Group (Ziegler and StÖssel,1985). As there seems to be a general agreement with respect to the opening of the Neotethys NE of the Arabian continental block during Triassic times (Stöcklin,1974;Sengör,1985;Descourt et al.,1986 ), it can be inferred that the meta-carbonatites represent magmas related to the volcanism associated with the Triassic rifting. A relationship with the movements of the Paleo-Tethys of SengÖr (op. cit.) or Tethys of Dewey et al. (1983) is ruled out based on the observations by Bèchenec (1987) who clearly assigned the alkaline volcanic rocks to the aforementioned Neotethys. Glennie et al. (1974,1973), Lippard et al. (1986) and BÖchenec (1987) place the origin of the allochthonous sediments NE of the Arabian platform at the passive margin of the Neotethys. According to this model, the meta-carbonatites can be explained as mantle magmas marking the site where the deep reaching Dibba fault zone crosscuts the Triassic SE-NW running rift faults. In order to explain the measured paleocurrent data of the Exotics and the Umar Group, Blendinger (in press) assumes an original position further south and movements along a transform faulting adjacent to an SW directed thrust to bring them into their present position. Using this model, the connection with the Dibba fault zone becomes arbitrary. In both models, however, the meta-carbonatites would have formed along the passive margin of the Arabian continent in a transition zone from continental to oceanic crust in an oceanic island setting similar to the situation of the Canary Islands at the margin of the African continent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allègre, C., Pineau, F., Bernat, M. and Javoy, M., 1971. Evidence for the occurrence of carbonatites on the Cape Verde and Canary Islands., Nature Phys. Sci., 233: 103–104.

    Google Scholar 

  • Allemann, F. and Peters, Tj., 1972. The Ophiolite-radiolarite belt of the North Oman Moun-tains., Eclogae Geol. HeIv., 65 (3): 657–697.

    Google Scholar 

  • Bailey, D.K., 1989. Carbonate melts from the mantle in the volcanoes of south-east Zambia., Nature, 338: 415–418.

    Article  Google Scholar 

  • Barber, C., 1974. The Geochemistry of Carbonatites and related rocks from two Carbonatite Complexes, South Nyanza, Kenya., Lithos, 7: 53–63.

    Article  Google Scholar 

  • Barreiro, B.A. and Cooper, A.F., 1987. A Sr, Nd and Pb isotope study of alkaline lamprophyres and related rocks from Westland and Otago, South Island, New Zealand. In: E.M. Morris, and J.D. Pasteris (Eds), Spec. Pap. Geol. Soc. Amer, 215: 115–125.

    Google Scholar 

  • Bechenec, F., 1987. Géologie des nappes Hawasina dans les parties orientales et centrales des montagnes d’Oman., BRGM, Orléans, 127: 474 p.

    Google Scholar 

  • Bell, K., 1989. Carbonatites, genesis and evolution., Unwyn Hyman, London, 618 p.

    Google Scholar 

  • Bell, K. and Blenkinsop, J., 1989. Neodymium and strontium isotope geochemistry of carbonat-ites. In: K. Bell (Ed), Carbonatites, genesis and evolution. Unwyn Hyman, London, pp.278–300.

    Google Scholar 

  • Blendinger, W., in press. The Upper Hawasina Nappes, Oman: Remnants of offshore carbonate highs or fragments of a south Tethyan continental margin?.

    Google Scholar 

  • De Paolo, D.J., 1988. Neodymium Isotope Geochemistry. An Introduction. Springer, Berlin, 187 pp.

    Google Scholar 

  • De Paolo, D.J. and Johnson, R.W., 1979. Magma genesis in the New Britain island arc: constraints from Nd and Sr isotopes and trace element patterns., Contrib. Mineral. Petrol., 70: 367–379.

    Article  Google Scholar 

  • Descourt, J., Zonenshain, L.P., Ricou, L.E., Kazmin, V.G., Le Pichon, X., Knipper, A.L., Grandjacquet, C., Sbortshikov, I.M., Geyssant, J., Lepvrier, C., Pechersky, D.H., Boulin, J., Sibuet, J.C., Savostin, L.A., Sorokhtin, O., Westphal, M., Bazhenov, M.L., Lauer, J.P. and Bijou-Duval, B., 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias., Tectonophysics, 123: 241–315.

    Article  Google Scholar 

  • Dewey, J.F., Pitman, W.C., Ryan, W.B.F. and Bonin, J.. 1973. Plate tectonics and the evolution of the Alpine system., Bull. Geol. Soc. Amer., 84: 3137–3180.

    Article  Google Scholar 

  • Emery, K.O. and Uchupi, E., 1984. The geology of the Atlantic Ocean. Springer, New York, 1050 p.

    Book  Google Scholar 

  • Faure, G., 1986. Principles of Isotope Geology. Second Edition. Wiley, New York, 589 p.

    Google Scholar 

  • Glennie, K.W., Boeuf, M.G.A., Hughes-Clarke, M.W., Moody-Stuart, M., Pillar, W.F.H., and Reinhardt, B.M., 1973. Late Cretaceous nappes in the Oman Mountains and their geologic evolution., Bull. Amer. Assoc. Petroleum Geol., 57 (1): 5–27.

    Google Scholar 

  • Glennie, K.W., Boeuf, M.G.A., Hughes-Clarke, M.W., Moody-Stuart, M., Pillar, W.F.H. and Reinhard, B.M., 1974. Geology of the Oman Mountains (2 volumes). Koninkl. Nederlands. Geol. Mijnbouwkundig Genootschap.

    Google Scholar 

  • Greenwood, J.E.G.W. and Loney, P.E., 1968. Geology and Mineral Resources of the Trucial Oman Range., Inst. Geol. Sci. London, 108 p.

    Google Scholar 

  • Haskin, L.A., Haskin, A., Frey, F.A. and Wildemann, T.R., 1968. Relative and absolute terrestrial abundances of the rare earths. In: L.H. Ahrens (Ed), Origin and Distribution of the Elements, 1. Pergamon, Oxford, pp. 889–911.

    Google Scholar 

  • Hawkesworth, C.J. and van Calsteren, P.W.C., 1984. Radiogenic Isotopes - Some Geological Applications. In: P. Henderson, (Ed). Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 375–421.

    Google Scholar 

  • Heinrich, E.W., 1966. The geology of carbonatites. Rand McNally, Chicago. 555 p.

    Google Scholar 

  • Jacobsen, S.B. and Wasserburg, G.J., 1978. Nd and Sr isotopic study of the Permian Oslo Rift. US Geol. Surv. Open File Rep., 78–701: 194–196.

    Google Scholar 

  • Keto, L.S. and Jacobsen, S.B., 1987. Nd and Sr isotopic variations of early Paleozoic oceans. Earth and Planet. Sci. Lett., 84: 27–41.

    Article  Google Scholar 

  • Keto, L.S. and Jacobsen, S.B., 1988. Nd isotopic variations of Phanerozoic paleoceans. Earth and Planet. Sci. Lett., 90: 395–410.

    Article  Google Scholar 

  • Krähenbühl, U., 1985. Möglichkeiten und Grenzen der Neutronenaktivierungsanalyse. Swiss. Chem, 7 (10): 55–56.

    Google Scholar 

  • Jaeger, E., 1979. The Rb-Sr Method, 13–26. In: E. Jaeger and J.C. Hunziker (Eds). Lectures in Isotope Geology. Springer, Berlin. 329 p.

    Chapter  Google Scholar 

  • King, B.C. and Sutherland, D.S., 1966. The carbonatite complexes of eastern Uganda. In: O.F. Tuttle and J. Gittins (Eds), Carbonatites. Interscience, New York, pp. 73–126.

    Google Scholar 

  • Le Bas, M.J.,1984. Oceanic carbonatites. In: J. Kornprobst (Ed), Kimberlites I. Kimberlites and related rocks. Elsevier, Amsterdam, pp. 169–178.

    Chapter  Google Scholar 

  • Lippard, S.J., Shelton, A.W. and Gass, I.G., 1986. The ophiolite of Northern Oman. Mem. Geol. Soc. London, 11. Blackwell Scientific Publications, Oxford-London.

    Google Scholar 

  • McCulloch, M.T., Gregory, R.T., Wasserburg, G.J. and Taylor, H.P., 1980. A neodymium, strontium and oxygen isotopic study of the Cretaceous Semail Ophiolite and implications for the petrogenesis and seawater-hydrothermal alteration of oceanic crust. Earth and Planet. Sci. Lett., 46: 201–211.

    Article  Google Scholar 

  • Meen, J.K., Ayers, J.C. and Fregeau, E.J., 1989. A model of mantle metasomatism by carbonated alkaline melts: trace element and isotopic compositions of mantle source regions of carbonatite and other continental igneous rocks. In: K. Bell (Ed), Carbonatites, genesis and evolution. London, Unwyn, Hyman, pp. 448–461.

    Google Scholar 

  • Menzies, M., Leeman, W.P. and Hawkesworth, C.J., 1983. Isotope geochemistry of Cenozoic volcanic rocks reveals mantle heterogeneity below western USA., Nature, 303: 205–207.

    Article  Google Scholar 

  • Nakamura, N., 1974. Determination of REE, Ba, Mg, Na and K in carbonaceous and ordinary chondrites., Geochim. cosmochim. Acta, 38: 757–775.

    Google Scholar 

  • Nelson, D.R., Chivas, A.R., Chappell, B.W. and McCulloch, M.T., 1988. Geochemical and isotope systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim. cosmochim., Acta, 52: 1–17.

    Google Scholar 

  • Nesbitt, E.B., Dietrich, V. and Esenwein, A., 1979. Routine trace element determination in silicate minerals and rocks by X-ray fluorescence., Fortschr. Mineral., 57, 264–279.

    Google Scholar 

  • Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: R.S. Thorpe (Ed), Andesites. J. Wiley & Sons, New York, pp. 525–548.

    Google Scholar 

  • Pearce, J.A., 1983. Role of the Sub-continental Lithosphere in Magma Genesis at Active Continental Margins. In: C.J. Hawkesworth and M.J. Norry (Eds), Continental Basalts and Mantle Xenoliths. Shiva Publ. Ltd., Norwich, pp. 230–249.

    Google Scholar 

  • Perry, F.V., Baldridge, W.S. and De Paolo, D.J., 1987. Role of astenosphere and lithosphere in the genesis of Late Cenozoic basaltic rocks from the Rio Grande Rift and adjacent regions of the southwestern United States., J. Geophys. Res., 92: 9193–9213.

    Article  Google Scholar 

  • Searle, M.P., 1980. The metamorphic sheet and underlying volcanic rocks beneath the Semail Ophiolite in the northern Oman Mountains of Arabia. PhD thesis, The Open University, Department of Earth Sciences, Great Britain. 213 p.

    Google Scholar 

  • Searle, M.P., Lippard, S.J., Smewing, J.D. and Rex, D.C., 1980. Volcanic rocks beneath the Semail Ophiolite nappe in the northern Oman mountains and their significance in the Mesozoic evolution of Tethys., J. geol. Soc. London, 137: 589–604.

    Article  Google Scholar 

  • Semken, S.C., 1984. A neodymium and strontium isotopic study of late Cenozoic basaltic volcanism in the southwestern Basin and Range province. MS thesis, University of California, Los Angeles, 68 p.

    Google Scholar 

  • Sengör, A.M.C., 1984. Die Alpiden und die Kimmeriden: Die verdoppelte Geschichte der Tethys., Geol. Rdsch., 74: 181–213.

    Article  Google Scholar 

  • Staudigel, H., Zindler, A., Hart S.R., Leslie, T., Chen, C-Y., Clague, D., 1984. The isotope systematics of a juvenile intraplate volcano: Pb, Nd, and Sr isotope ratios of basalts from Loihi seamount, Hawaii., Earth and Planet. Sci. Lett., 69: 13–29.

    Article  Google Scholar 

  • Steiger, R.H. and Jäger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology., Earth and Planet. Sci. Lett., 36: 358–362.

    Article  Google Scholar 

  • Stöcklin, J., 1974. Possible ancient continental margins in Iran. In: C. Burk and C.L. Drake (Eds), The Geology of Continental Margins. Springer, Berlin, pp. 873–878.

    Google Scholar 

  • Stössel, G.F.U. and Ziegler, U.R.F., 1989. Age determinations in the Rehoboth Basement Inlier, SWA/Namibia. Doctoral thesis, Univ. Bern, Switzerland, 250 p.

    Google Scholar 

  • Sun, S. and Nesbitt, R.W., 1977. Chemical heterogeneity of Archaean mantle, composition of the earth and mantle evolution., Earth and Planet. Sci. Lett., 35: 429–448.

    Article  Google Scholar 

  • Woolley, A.R., 1989. The spatial and temporal distribution of carbonatites In: K. Bell (Ed), Carbonatites, genesis and evolution. Unwyn, Hyman, London, pp. 15–37.

    Google Scholar 

  • Woolley, A.R., Barr, M.W.C., Din, V.K., Jones, G.C., Wall, F. and Williams, L.T., 1990. Extrusive Carbonatites from the United Arab Emirates. Abstract, IAVCEI Meeting, Mainz 1990.

    Google Scholar 

  • Wyllie, P., 1966. Experimental studies of carbonatite problems: The origin and differentiation of carbonatite magmas. In: O.F. Tuttle and J. Gittins (Eds), Carbonatites. Interscience, New York, pp. 311–352.

    Google Scholar 

  • Ziegler, U.R.F. and Stoessel, G.F.U., 1985. The Metamorphic Series associated with the Semail Ophiolite Nappe of the Oman Mountains in the United Arab Emirates. MS thesis Univ. Bern, Switzerland, 293 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tj. Peters A. Nicolas R. G. Coleman

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ziegler, U., Stössel, F., Peters, T. (1991). Meta-Carbonatites in the Metamorphic Series Below the Semail Ophiolite in the Dibba Zone, Northern Oman Mountains. In: Peters, T., Nicolas, A., Coleman, R.G. (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3358-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3358-6_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5484-3

  • Online ISBN: 978-94-011-3358-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics