Skip to main content

Interstitial Nitrogen, Carbon, and Hydrogen: Modification of Magnetic and Electronic Properties

  • Chapter
Interstitial Intermetallic Alloys

Part of the book series: NATO ASI Series ((NSSE,volume 281))

Abstract

It is shown how the electronic and magnetic properties of rare-earth transition-metal intermetallics are modified by interstitial atoms. On an introductory level and starting from illustrative physical ideas we relate band structure, statistics, and electrostatic crystal field effects to the intrinsic properties magnetic moment, Curie temperature, and magnetocrystalline anisotropy. We discuss how the permanent magnetic properties of Sm2Fe17 and other intermetallics are improved upon interstitial modification, and put particular weight on recent developments such as spin-fluctuation theory and screening of crystal-field charges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. M. D. Coey and H. Sun, J. Magn. Magn. Mater. 87, L251 (1990).

    Article  ADS  Google Scholar 

  2. J. M. D. Coey, H. Sun, and D. P. F. Hurley, J. Magn. Magn. Mater. 101, 310(1991).

    Article  ADS  Google Scholar 

  3. Y.-C. Yang, X.-D. Zhang, S.-L. Ge, Q. Pan, L.-S. Kong, H.-L.Li, J.-L. Yang,B.-S. Zhang, Y.-F. Ding, and C.-T. Ye, J. Appl. Phys. 70, 6001 (1991).

    Article  ADS  Google Scholar 

  4. Qi-Nian Qi, Y. P. Li, and J. M. D. Coey, J. Phys.: Condens. Matter 4, 8209(1992).

    Article  ADS  Google Scholar 

  5. J. M. D. Coey, H. Sun, Y. Otani, and D. P. F. Hurley, J. Magn. Magn. Mater. 98,76 (1991).

    Article  ADS  Google Scholar 

  6. H. Sun, B.-P. Hu, H.-S. Li, and J. M. D. Coey, Solid State Comm. 74, 727(1990).

    Article  ADS  Google Scholar 

  7. D. P. F. Hurley and J. M. D. Coey, J. Magn. Magn. Mater. 99, 229 (1991).

    Article  ADS  Google Scholar 

  8. M. Katter, J. Wecker, C. Kuhrt, L. Schultz, X. C. Kou, and R. Grössinger, J.Magn. Magn. Mater. 1l l, 293 (1992).

    Article  ADS  Google Scholar 

  9. J. M. D. Coey, Physica Scripta T39, 21 (1991).

    Article  ADS  Google Scholar 

  10. H. Sun, J. M. D. Coey, Y. Otani, and D. P. F. Hurley, Phys.: Condens. Matter 2,6465 (1990).

    Article  ADS  Google Scholar 

  11. J. M. D. Coey and D. P. F. Hurley, J. Magn. Magn. Mater. 104,1098 (1992).

    Article  ADS  Google Scholar 

  12. J. M. D. Coey and Y. Otani, J. Mag. Soc. Japan 15, 677 (1991).

    Google Scholar 

  13. H.-S. Li and J. M. D. Coey, “Magnetic Properties of Ternary Rare-EarthTransition-Metal Compounds”, in: Handbook of Magnetic Materials VI, K.H. J. Buschow, ed., Elsevier, Amsterdam, 1991, p. 1.

    Google Scholar 

  14. J. C. Slater, Phys. Rev. 36, 57 (1930).

    Article  ADS  MATH  Google Scholar 

  15. J. M. D. Coey, “Rare-Earth -Iron Permanent Magnets”, in: CurrentTrends in the Physics of Materials, G. F. Chiarotti, F. Fumi, and M.P. Tosi, eds., North-Holland, Amsterdam, 1990, p. 265.

    Google Scholar 

  16. R. Coehoorn, “Electronic Structure Calculations for Rare-Earth TransitionMetal Compounds” in Supermagnets, Hard Magnetic Materials, G. J.Long and F. Grandjean, eds., Kluwer, Dordrecht, 1991, p. 133.

    Google Scholar 

  17. J. F. Herbst, Rev. Mod. Phys. 63 , 819 (1991).

    Article  ADS  Google Scholar 

  18. M. Sagawa, S. Hirosawa. H. Yamamoto, S. Fujimura, Y. and Masuura, Jpn. J. Appl.Phys.26, 785(1987).

    Article  ADS  Google Scholar 

  19. K. H. J. Buschow, Materials Science Report, 1, 1 (1986).

    Article  Google Scholar 

  20. R. Skomski and J. M. D. Coey, J. Appl. Phys. 73, 7602 (1993).

    Article  ADS  Google Scholar 

  21. J. M. D. Coey, R. Skomski, and S. Wirth, IEEE Trans. Magn. 28, 1992 (2332).

    Article  ADS  Google Scholar 

  22. J. S. Griffith, The Theory of Transition-Metal Ions, University Press,Cambridge, 1964.

    Google Scholar 

  23. W. Jones and N. H. March, Theoretical Solid-State Physics I, Wiley &Sons, London, 1973.

    Google Scholar 

  24. P. Fulde, Electron Correlations in Molecules and Solids, Springer,Berlin, 1991.

    Book  Google Scholar 

  25. F. Bloch, Z. Phys. 57, 545 (1929).

    Article  ADS  MATH  Google Scholar 

  26. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, New York,1976.

    Google Scholar 

  27. S. Blugcl, in 24. IFF-Ferienkurs, IFF, Jülich, 1993, ch. 6.

    Google Scholar 

  28. J. F. Janak, Phys. Rev. B 16, 255 (1977).

    Article  ADS  Google Scholar 

  29. H. Ibach and H. Lüth, Solid-StatePhysics, Springer, Berlin, 1993.

    Google Scholar 

  30. J. Emsley, The Elements, Clarendon, Oxford, 1989.

    Google Scholar 

  31. R. Zeller, in 24.IFF-Ferienkurs, IFF, Jülich, 1993, ch. 18.

    Google Scholar 

  32. J. D. Fast, Gases in Metals, MacMillan, London, 1976.

    Google Scholar 

  33. N. F. Mott and H. Jones, TheTheory of the Properties of Metals and Alloys, Clarendon, Oxford, 1936.

    Google Scholar 

  34. A. C. Switendick, “The Changein Electronic Properties on Hydrogen Alloying and Hydride Formation” in Hydrogenin Metals I, G. Alefeld and J. Völkl, eds., Springer, Berlin, 1978, p.101.

    Google Scholar 

  35. W. E. Wallace, “Magnetic Properties of Metal Hydrides and Hydrogenated Intermetallic Compounds” in Hydrogenin Metals I, G. Alefeld and J. Völkl, eds., Springer, Berlin, 1978, p.169.

    Google Scholar 

  36. J. Friedel, Adv. Phys. 3, 446(1954).

    Article  ADS  Google Scholar 

  37. S. S. Jaswal, IEEE Trans. Magn.28, 2322 (1992).

    Article  ADS  Google Scholar 

  38. Y. P. Li, H.-S. Li, and J. M. D. Coey, phys. stat. sol.(b) 166, K107 (1991).

    Article  ADS  Google Scholar 

  39. S. S. Jaswal, W. B. Yelon, G. C.Hadjipanayis, Y. Z. Wang, and D. J. Sellmyer, Phys. Rev. Lett. 67, 644 (1991).

    Article  ADS  Google Scholar 

  40. Q.-N. Qi and J. M. D. Coey, to bepublished.

    Google Scholar 

  41. Y.-P. Li and J. M. D. Coey, Solid State Comm. 81, 447 (1992).

    Article  ADS  Google Scholar 

  42. T. Beuerle and M. Fähnle, J. Magn.Magn. Mat. 110, L29 (1992).

    Article  ADS  Google Scholar 

  43. T. Beuerle, P. Braun, and M.Fähnle, J. Magn. Magn. Mater. 94, Lll (1991).

    Google Scholar 

  44. Q.-N. Qi, H. Sun, R. Skomski, andJ. M. D. Coey, Phys. Rev. B 45, 12278 (1992).

    Article  ADS  Google Scholar 

  45. M. Fähnle and T.Beuerle, phys.stat. sol. (b) 177, K95 (1993).

    Article  ADS  Google Scholar 

  46. J. M. Yeomans, Statistical Mechanics of Phase Transitions, Clarendon, Oxford, 1992.

    Google Scholar 

  47. C. Itzykson and J.-M. Drouffe, Statistical Field Theory I, University Press, Cambridge, 1989.

    Book  Google Scholar 

  48. K. K. Murata and S. Doniach, Phys.Rev. Lett. 29, 285 (1972).

    Article  ADS  Google Scholar 

  49. M. Shimizu, Rep. Prog. Phys. 44,329 (1981).

    Article  ADS  Google Scholar 

  50. T. Moriya, J. Magn. Magn. Mater.100, 261 (1991) .

    Article  ADS  Google Scholar 

  51. P. Mohn and E. P. Wohlfarth, J.Phys. F: Met. Phys. 17, 2421 (1987).

    Article  ADS  Google Scholar 

  52. J. P. Gavigan, D. Givord, H. S.Li, and J. Voiron, Physica B 149, 345 (1988).

    Article  Google Scholar 

  53. N. H. Duc, T. D. Hien, D. Givord,J. J. M. Franse, and F. R. de Boer, J. Magn. Magn. Mater. 124, 305 (1993).

    Article  ADS  Google Scholar 

  54. B.-P. Hu, H.-S. Li, J. P. Gavigan,and J. M. D. Coey, J. Phys.: Condens. Matter 1, 755 (1989).

    Article  ADS  Google Scholar 

  55. G. G. Lonzarich and L. Taillefer,J. Phys. C: Solid State Phys. 18, 4339 (1985).

    Article  ADS  Google Scholar 

  56. B. Kirchner, W. Weber, and J.Voigtländer, J. Phys.: Condens. Matter 4, 8097 (1992).

    Article  ADS  Google Scholar 

  57. Y. Kakehashi and P. Fulde, Phys.Rev. B 32, 1595 (1985).

    Article  ADS  Google Scholar 

  58. J. Hubbard, Phys. Rev. B 19, 2626(1979).

    Article  ADS  Google Scholar 

  59. H. Hasegawa, J. Phys. Soc. Japan46, 1504 (1979).

    Article  ADS  Google Scholar 

  60. B. L.. Gyorffy, A. J. Pindor, J.Staunton, G. M. Stocks, and H. Winter, J.Phys. F 15, 1337 (1985).

    Article  ADS  Google Scholar 

  61. J. Staunton and B. L. Gyorffy,Phys. Rev. Lett. 69, 371 (1992).

    Article  ADS  Google Scholar 

  62. Y. Kakehashi, Phys. Rev. B 34,3243 (1986).

    Article  ADS  Google Scholar 

  63. R. E. Prange and V. Korenman,Phys. Rev. B 19, 4691 (1979).

    Article  ADS  Google Scholar 

  64. K.-H. Müller, D. Eckert, P. A. P.Wendhausen, A. Handstein, S. Wirth, and M. Wolf, IEEE Trans. Magn., in press(1994).

    Google Scholar 

  65. M. Brouha and K. H. J. Buschow, J.Appl. Phys. 44, 1813 (1973).

    Article  ADS  Google Scholar 

  66. Q.-N. Qi, R. Skomski and J. M. D.Coey, J. Phys.: Condens. Matter 6,32 45 (1994).

    Google Scholar 

  67. R. Coehoorn, Phys. Rev. B 39,13072 (1989).

    Article  ADS  Google Scholar 

  68. J. F. Herbst, J. J. Croat, R. W. Lee, and W. B. Yelon, J.Appl. Phys. 53, 250 (1982).

    Article  ADS  Google Scholar 

  69. J. C. Slater, Rev. Mod. Phys. 25,199 (1953).

    Article  ADS  MATH  Google Scholar 

  70. D. R. Haman, Phys. Rev. Lett. 23,95 (1969).

    Article  ADS  Google Scholar 

  71. W. E. Evenson, J. R. Schrieffer,and S. Q. Wang, J. Appl. Phys. 41, 1199 (1970).

    Article  ADS  Google Scholar 

  72. R. Dederichs, in 24.IFF-Ferienkurs, IFF, Jülich, 1993, ch. 27.

    Google Scholar 

  73. S. H. Liu, Phys. Rev. B 15, 4281(1977).

    Article  ADS  Google Scholar 

  74. Y. Kakehashi, Phys. Rev. B 43,10820 (1991).

    Article  ADS  Google Scholar 

  75. Y. Kakehashi, Phys. Rev. B 47,3185 (1993).

    Article  ADS  Google Scholar 

  76. V. Heine, Phys. Rev. 153, 673(1967).

    Article  ADS  Google Scholar 

  77. M. Brouha, K. H. J. Buschow, and A. R. Miedema, IEEE Trans. Magn. 10, 182 (1974).

    Article  ADS  Google Scholar 

  78. N. D. Lang and H. Ehrenreich,Phys. Rev. 168, 605 (1968).

    Article  ADS  Google Scholar 

  79. S. Jaakkola, S. Parviainen, and S.Penttilä, J. Phys. F: Met. Phys. 13, 491 (1983).

    Article  ADS  Google Scholar 

  80. D. M. Edwards and E. P. Wohlfarth,Proc. R. Soc. A 303, 127 (1968).

    Article  ADS  Google Scholar 

  81. J. M. D. Coey, “IntermetallicCompounds and Crystal-Field Interaction”, in: Science and Technology ofNanostructured Materials, G. C. Hadjipanayis and G. A. Prinz, eds., Plenum Press, New York, 1991, p. 439.

    Google Scholar 

  82. M. D. Kuz’min, Phvs. Rev. B 46,8219 (1992).

    Article  ADS  Google Scholar 

  83. K. N. R, Taylor and M. I. Darby, Physicsof Rare-Earth Solids, Chapman & Hall, London, 1972.

    Google Scholar 

  84. D. J. Newman and B. Ng, Rep. Prog.Phys. 52, 699 (1989).

    Article  ADS  Google Scholar 

  85. M. T. Hutchings, Solid State Phys.16, 227 (1964).,

    Article  Google Scholar 

  86. A. J. Freeman and R. E. Watson,Phys. Rev. 127, 2058 (1962).

    Article  ADS  Google Scholar 

  87. R. Skomski, M. D. Kuz’min, and J.M. D. Coey, J. Appl. Phys. 73, 6934 (1993).

    Article  ADS  Google Scholar 

  88. H.-S. Li and J. M. D. Coey, J.Magn. Magn. Mater. 115, 152 (1992).

    Article  ADS  Google Scholar 

  89. D. Fruchart and S. Miraglia, J.Appl. Phys. 69, 5578 (1991).

    Article  ADS  Google Scholar 

  90. R. Skomski , Phil. Mag. B 69, inpress (1994).

    Google Scholar 

  91. M. Richter, P. M. Oppeneer, H.Eschrig and B. Johansson, Phys. Rev. B 46, 13919 (1992).

    Article  ADS  Google Scholar 

  92. X.-F. Zhong and W. Y. Ching, Phys.Rev. B 39, 12018 (1989).

    Article  ADS  Google Scholar 

  93. K. Hummler and M. Fähnle, Phys.Rev. B 45, 3161 (1992).

    Article  ADS  Google Scholar 

  94. N. H. March, Adv. Phys. 6, 1(1957).

    Article  ADS  Google Scholar 

  95. R. Skomski, in Proceedings ofthe 8th International Symposium on Magnetic Anisotropy and Coercivity inRE-TM Alloys, University of Birmingham, in press, (1994).

    Google Scholar 

  96. H.-S. Li and J. M. Cadogan, in Proceedingsof the 7th International Symposium on Magnetic Anisotropy and Coercivityin RE-TM Alloys, University of Western Australia, Perth, 1992, p. 185.

    Google Scholar 

  97. K. H. J. Buschow, Rep. Prog. Phys.54, 1123 (1991).

    Article  ADS  Google Scholar 

  98. S. G. Brush, Rev. Mod. Phys. 39,883 (1967).

    Article  ADS  Google Scholar 

  99. K. H. Fischer and J. A. Hertz, Spin Glasses, University Press, Cambridge, 1991.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Skomski, R. (1995). Interstitial Nitrogen, Carbon, and Hydrogen: Modification of Magnetic and Electronic Properties. In: Grandjean, F., Long, G.J., Buschow, K.H.J. (eds) Interstitial Intermetallic Alloys. NATO ASI Series, vol 281. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0295-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0295-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4130-0

  • Online ISBN: 978-94-011-0295-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics