Skip to main content

Atomic Hydrogen Production and Modelling Revisited

  • Chapter
Hydrogen Energy System

Part of the book series: NATO ASI Series ((NSSE,volume 295))

Abstract

In this study the microwave discharge technique for atomic hydrogen production is reviewed starting with the earlier work of Wood in 1921 uptill the extensive electrical discharge era of 1970’s. The evaluation is completed with the recent studies which concentrated on atomic hydrogen utilization in semiconductor manufacturing, thin film formation, surface treatment and modification, nano particle formation, sintering and hydropyrolysis of hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mearns, A.M.and Morris, A.J.,Oxygen Dissociation in a MW Discharge, Chem. Eng. Prog. Symp. Ser. 67 No. 112, 37, 1971

    Google Scholar 

  2. Bell, AT.,and Kwong, K.,A, Model for the Kinetics of Oxygen Dissociation in a Microwave Discharge, Ind. Eng. Chem. Fundam, 12, 90, 1973

    Article  Google Scholar 

  3. Mearns, A.W., and Ekinci,E., Hydrogen Dissociation in a MW Discharge, Jor. MW Pow. , 12, 2, 153, 1977

    Google Scholar 

  4. Cooper, M.W., Mickey, H.S., and Baddour,F.F,Oxidation of Hydrogen Chloride , Ind. Eng. Chem. Fundam, 7, 400, 1968

    Article  Google Scholar 

  5. Juul-Dam, T. and Brockmeier, N.F., Electrical Probe Measurements in a Reacting Methane Ammonia Microwave Plasma , Ind.Eng. Chem. Prod. Res. Develop, 9, 388, 1970

    Article  Google Scholar 

  6. Brown, L.C.and Bell, AT.,Mass Spectrometric Study of Carbon Monoxide and the Decomposition of CO2 in a Ratio Frequency Discharge, J. Chem. Phys. 61 (2), 666–671, 1974

    Article  Google Scholar 

  7. Nirmatov, I. Sh., Shermatov, N., Mirsaidov, U., Spectroscopic and X-ray hase Examination of Products of Interaction between Hydrogen Atoms and Tin Chloride. Physics and Chemistry of Materials Treatment 26:1, 59–60, 1992

    Google Scholar 

  8. Nirmatov, I. Sh., Nateikina, E.V., Mirsaidov, U., Shermatov, N., Plasmochemical Reduction of Iron Chloride by Hydrogen Atoms, Physics and Chemistry of Materials Treatment, 25:1, 60–62, 1991

    Google Scholar 

  9. Bell, A.T., A Model for the Dissociation of Hydrogen in an Electric Discharge, Ind. Eng. Chem. Fundam, 11:2, 209, 215, 1972

    Article  Google Scholar 

  10. Wood, R.W., Dissociation of H2 into H by Low Frequency Discharge, Phil. Mag. 44,538,1922

    Article  Google Scholar 

  11. Poole, H.G., Atomic Hydrogen 1. Calorimetry of Hydrogen Atoms, Proc. Roy. Soc., A163, 404, 1937

    Google Scholar 

  12. Poole, H.G., Surface Effects in the Discharge Tube, Proc. Roy. Soc., A163, 424, 1937

    Google Scholar 

  13. Weinrich, G., and Hughes, V.W., Hyperfine Structure of He3 in the Metastable Triplet State, Phys. Rev., 95, 1451, 1954

    Article  Google Scholar 

  14. Nagle, D.E., Julian, R.S.,and Zacharias, J.R., Hyperfine Structure of Atomic Hydrogen and Deuterium, Phys. Rev., 72, 971, 1947

    Article  Google Scholar 

  15. Broida, H.P., and Moyer, J.W., Spectroscopic Analysis of Deuterium in Hydrogen-Deuterium Mixtures , J. Opt. Soc. Am., 42, 37, 1952

    Article  Google Scholar 

  16. McCarthy, R.L., Chemical Synthesis From Free Radicals Produced in Microwave Fields , J. Chem. Phys., 22, 1360, 1954

    Article  Google Scholar 

  17. Rose, D.J., and Brown, S.C., High Frequency Gas-Discharge Plasma in Hydrogen, Physical Review, Vol. 98, 310, No 2, 1955

    Article  Google Scholar 

  18. Shaw, T.M., Techniques of Electrical Discharge for Radical Production, Gen. Elect. Microwave Lab. Report, No TIS R 58 ELM, 115, Unpublished ,1958

    Google Scholar 

  19. Rony, P.R., Atomic Hydrogen at Low Pressures, U.S. At. Energy Comm. UCRL, 16073, 215, 1965

    Google Scholar 

  20. Mezey, E.J., and Oxley, J.H., Microwave Hydrogen Plasma in Gas Solid Systems, The Journal of Microwave Power, 2–3, 79–86, 1967

    Google Scholar 

  21. Skidan, V.V., and Shreider, E., Determination of the Degree of Hydrogen Dissociation in a Discharge, Opt. Spektrosk, 27(3), 534–4, 1969

    Google Scholar 

  22. Dingle, J.R., and LeRoy, D.J.J., Kinetics of the Reaction of Atomic Hydrogen in Acetylene, Chem. Phys., 18, 1632, 1950

    Google Scholar 

  23. Wittke, J.P., and Dicke, R.H., Redetermination of the Hyperfine Splitting in the Ground State of Atomic Hydrogen, Phys. Rev., 103, 620, 1956

    Article  Google Scholar 

  24. Zletz, A., Unpublished Report (1958) , (referred to it by Shaw, T.M., Formation and Trapping of Free Radicals, Acad. Press, 1960

    Google Scholar 

  25. Chou, C.H., Philips, J., The Foil Reconstruction in a Hydrogen Plasma, J. Var. Sci. Technol. A 8(6), 3941–3947, 1990

    Article  Google Scholar 

  26. Kato, I., Hatanaka, K., Tatsumi, T., Deposition Mechanism of a-Si:H Films Fabricated by Coaxial-line-type MW Plasma Chemical Vapour Deposition, Bulletin of Science and Engineering Research Laboratory, Waseda University 123, 1–12, 1989

    Google Scholar 

  27. Mathsushita, K., Hariu, T., Fang, S.F., and Shida,K., GaO, Q.2.,Plasma-Assisted Epitaxial Growth of Compound Semiconductors for Infrared Applications, Mat. Res. Soc. Symp. Proc. 90, 479–486, Mat. Res. Soc.,Pittsburg,1987

    Article  Google Scholar 

  28. Mori, Y., Degushi, M., Okada, T., Eimori, N.,Yagi, H., Hatta, A., Nishimura, K., Kitabatake, M., Ito, T., Hirao, T., Sasaki, T., and Hiraki,A., Electical Properties of Boron-Implanted Homoepitaxial Diamond Films, Jap. Journ. of Appl. Phys. Part 2: Letters 32:43, L601–L603, 1993

    Article  Google Scholar 

  29. Hsu,T., Anthony,B., Qian,R., Irby,J., Kinsky,D., Mahajan,A., Banerjee,S., Magee,C., Tasch,A., Advances in Remote Plasma-Enhanced Chemical Vapour Deposition for Low Temperature ln-situ Hydrogen Plasma Clean, Jour. Electronic Mat. Conf. 21:1,65–74,1992

    Google Scholar 

  30. Brecelj, F., Mozetic, M., Reduction of Metal Oxide Thin Layers by Hydrogen Plasma, Vacuum, 40:1–2, 177–178, 1990

    Article  Google Scholar 

  31. Murray, R., Mookherjee, P.B., Yoshinaga, A., Dawson, P., Enhanced Luminescence Efficiency in Growth Interrupted Single Quantom Wells by Atomic Hydrogen, Jour De Physique 3:5 , 441–444, 1993

    Google Scholar 

  32. Beiers, H., Baumann, H., Bittner, D., Klein, J., Juentgen,H., Pyrolysis of Some Gaseous and Liquid Hydrocarbons in Hydrogen Plasma, Fuel 67:7, 1012–1016, 1988

    Article  Google Scholar 

  33. Nikravech, M., Commarieu, A., Amouroux,J., Role des Especes Radicalaires Produits dans un Plasma Thermique, Reveu Int. des Hautes Temp. et des Refractaires 26:1, 23–38, 1990

    Google Scholar 

  34. Inal, O.T., and Metin, E.S., Surface Modification with Low Energy Plasmas, Plasma and Lasser Processing Materials Gd. K. Upadya, Minerals

    Google Scholar 

  35. Metin, E.S., and Inal. O.T., Formation and Growth of Iron Nitrides During lon-Nitriding, Jour. Mat. Sci., 22, 2783, 1987

    Article  Google Scholar 

  36. Schofield, K., Planet Space Science , 15, 643, 1967

    Article  Google Scholar 

  37. Khare, S.P, and Moisewitch, B.L., Dissociation of Hydrogen Molecules by Electron Impact, Proc.Pyhs. Soc. , 88, 605, 1966

    Article  Google Scholar 

  38. Clyne, M.A.A, and Stedman, D.H., Reactions of Atomic Hydrogen with Hydrogen Chloride and Nitrosyl Chloride,Trans. Faraday Soc., 62, 2164, 1966

    Article  Google Scholar 

  39. Ekinci, E., Production of Atomic Hydrogen Using a Microwave Discharge, PhD. Thesis, University of Newcastle upon Tyne, 1976

    Google Scholar 

  40. Johnson, E.O., and Malter, L., Langmuir Probe Description and Analysis, Physical Review, Vol. 80, Nol, 58–68, 1950.

    Article  Google Scholar 

  41. Cozens, J.R., and Engel, Von A., Origin of Excessive lonization in Flames, Int. Journal of Electronics, 19, 61, 1965

    Article  Google Scholar 

  42. Stoker, A., Production of Atomic Hydrogen Using a 2.45 GHz MW Discharge, PhD. Thesis , University of Newcastle upon Tyne, 1972

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ekinci, E. (1995). Atomic Hydrogen Production and Modelling Revisited. In: Yürüm, Y. (eds) Hydrogen Energy System. NATO ASI Series, vol 295. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0111-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0111-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4053-2

  • Online ISBN: 978-94-011-0111-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics