Skip to main content

Nutrients, organic carbon and the carbon cycle in sea water

  • Chapter
Marine Geochemistry
  • 660 Accesses

Abstract

The manner in which the carbon cycle operates in the ocean is of prime importance to marine geochemistry because the down-column transport of particulate organic carbon, i.e. the global carbon flux, drives the processes that control the removal of material from the water column and its incorporation into the sediment sink. The nutrient and carbon cycles are intimately interrelated, but for convenience they are considered separately in the following sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, F.A.J. 1965. Silicon. In Chemical oceanography, 1st edn, J.P. Riley & G. Skirrow (eds), Vol. 1, 409–32. London: Academic Press.

    Google Scholar 

  • Betzer, P.R., W.J. Showers, E.A. Laws, C.D. Winn, G.R. Du Tullio & P.M. Kroopnick 1984. Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep-Sea Res. 31, 1–11.

    Article  Google Scholar 

  • Biggs, D.G., A.F. Amos & O. Holm-Hanson 1985. Oceanographic studies of epi-pelagic ammonium distributions: the Ross Sea ammonium flux experiment. In Antarctic nutrient cycles, food webs, SCAR Symp. Antarct. Biol., W.R. Seigfried, P.R. Condy & R.M. Laws (eds), 93–103. Berlin: Springer-Verlag.

    Google Scholar 

  • Blumer, M. 1970. Dissolved organic carbon compounds in sea water: saturated and olefinic hydrocarbons and singly branched fatty acids. In Organic matter in natural waters, Inst. Mar. Sci. Alaska, Occas. Publ., no. 1, D.W. Hood (ed.), 153–67.

    Google Scholar 

  • Boehm, P.D. 1980. Evidence for the decoupling of dissolved, particulate and surface microlayer hydrocarbons in northwestern Atlantic continental shelf waters. Mar. Chem. 9, 255–81.

    Article  Google Scholar 

  • Bogdanov, Y.S., A.P. Lisitsyn & Y.A. Romankwich 1971. Organic matter in suspensions and bottom sediments of seas and oceans. In Organic matter in recent and fossil sediments. Moscow: Nauka.

    Google Scholar 

  • Broecker, W.S. 1974. Chemical oceanography. New York: Harcourt Brace Jovanovich.

    Google Scholar 

  • Broecker, W.S. & T.-H. Peng 1982. Tracers in the sea. Palisades, NY: Lamont-Doherty Geological Observatory.

    Google Scholar 

  • Bruland, K.W. 1980. Oceanographie distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet. Sci. Lett. 47, 176–98.

    Article  Google Scholar 

  • Cauwet, G. 1981. Non-living particulate matter. In Marine organic chemistry, E.K. Duursma & R. Dawson (eds), 71–89. Amsterdam: Elsevier.

    Google Scholar 

  • Cho, B.C. & F. Azam 1988. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332, 441–3.

    Article  Google Scholar 

  • Craig, H. 1969. Abyssal carbon and radiocarbon in the Pacific. J. Geophys. Res. 74, 5491–506.

    Article  Google Scholar 

  • Craig, H. 1971a. The deep metabolism: oxygen consumption in abyssal ocean water. J. Geophys. Res. 76, 5078–86.

    Article  Google Scholar 

  • Craig, H. 1971b. Son of abyssal carbon. J. Geophys. Res. 76, 5133–9.

    Article  Google Scholar 

  • Datsko, V.G. 1959. Organic matter in the southern seas of the USSR. Izd. Akad. Nauk SSSR.

    Google Scholar 

  • Dawson, R. & E.K. Duursma 1981. State of the art. In Marine organic chemistry, E.K. Duursma & R. Dawson (eds), 497–512. Amsterdam: Elsevier.

    Google Scholar 

  • Degens, E.T. & K. Mopper 1976. Factors controlling the distribution and early diagenesis of organic matter in marine sediments. In Chemical oceanography, Vol. 5, J.P. Riley & R. Chester (eds), 59–113. London: Academic Press.

    Google Scholar 

  • De Vooys, C.G.N. 1979. Primary production in aquatic environments. In The global carbon cycle, SCOPE 13, 259–92. Chichester: Wiley.

    Google Scholar 

  • Duce, R.A. 1986. The impact of atmospheric nitrogen, phosphorus, and iron species on marine biological productivity. In The role of air-sea exchange in geochemical cycling, P. Buat-Menard (ed.) 497–529. Dordrecht: Reidel.

    Google Scholar 

  • Dugdale, R.C. & J.J. Goering 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr. 12, 196–206.

    Article  Google Scholar 

  • Eadie, B.J., L.M. Jeffrey & W.M. Sackett 1978. Some observations on the stable carbon isotope composition of dissolved and particulate organic carbon in the marine environement. Geochim. Cosmochim. Acta 42, 1265–9.

    Article  Google Scholar 

  • Eglinton, G. & R.J. Hamilton 1963. The distribution of alkanes. In Chemical plant taxonomy, T. Swain (ed.), 187–218. New York: Academic Press.

    Google Scholar 

  • Ehrhardt, M., C. Osterroht & G. Petrick 1980. Fatty-acid methyl esters dissolved in seawater and associated with suspended particulate material. Mar. Chem. 10, 67–76.

    Article  Google Scholar 

  • Eppley, R.W. & B.J. Peterson 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–80.

    Article  Google Scholar 

  • Fellows, D.A., D.M. Karl & G.A. Knauer 1981. Large particle fluxes and the vertical transport of living carbon in the upper 1500 m of the northeast Pacific ocean. Deep-Sea Res. 28, 921–36.

    Article  Google Scholar 

  • Fenical, W. 1981. Natural halogenated organics. In Marine organic chemistry, E.K. Duursma & R. Dawson (eds), 375–93. Amsterdam: Elsevier.

    Google Scholar 

  • French, D., M.J. Furnas & T.J. Smayda 1983. Diet changes in nitrite concentration in the chlorophyll maximum in the Gulf of Mexico. Deep-Sea Res. 30, 707–22.

    Article  Google Scholar 

  • Gagosian, R.B. & C. Lee 1981. Processes controlling the distribution of biogenic organic compounds in seawater. In Marine organic chemistry, E.K. Duursma & R. Dawson (eds), 91–123. Amsterdam: Elsevier.

    Google Scholar 

  • Jackson, G.A. 1988. Implications of high dissolved organic matter concentrations for oceanic properties and processes. Oceanography November, 621–3.

    Google Scholar 

  • Jackson, G.A. & P.M. Williams 1985. Importance of dissolved organic nitrogen and phosphorus to biological nutrient cycling. Deep-Sea Res. 32, 223–35.

    Article  Google Scholar 

  • Jahnke, R.A. & G.A. Jackson 1987. Role of sea floor organisms in oxygen consumption in the deep North Pacific Ocean. Nature 329, 621–3.

    Article  Google Scholar 

  • Jenkins, W.J. & J.C. Goldman 1985. Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res. 43, 465–91.

    Article  Google Scholar 

  • Kakanazawa, A. & S. Teshima 1971. In vivo conversion of cholesterol to steroid hormones in the spiny lobster, Panulirus japonica. Bull. Japan. Soc. Fish. 27, 207–12.

    Google Scholar 

  • Kamykowski, D. & S.-J. Zentara 1986. Predicting plant nutrient concentrations from temperature and sigma-t in the upper kilometer of the world ocean. Deep-Sea Res. 33, 89–105.

    Article  Google Scholar 

  • Karl, D.M. & G.A. Knauer 1984. Vertical distribution, transport, and exchange of carbon in the northeast Pacific Ocean: evidence for multiple zones of biological activity. Deep-Sea Res. 31, 221–43.

    Article  Google Scholar 

  • Karl, D.A., G.A. Knauer & J.H. Martin 1988. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332, 438–41.

    Article  Google Scholar 

  • Kattner, G., G. Gercken & K.D. Hammer 1983. Development of lipids during a spring plankton bloom in the northern North Sea. Mar. Chem 14, 163–73.

    Article  Google Scholar 

  • Kawase, M. & J.L. Sarmiento 1985. Nutrients in the Atlantic thermocline. J. Geophys. Res. 90, 8961–79.

    Article  Google Scholar 

  • Kennicutt, M.C. & L.M. Jeffrey 1981. Chemical and CG-MS characterization of marine dissolved lipids. Mar. Chem. 10, 367–87.

    Article  Google Scholar 

  • Kepkay, P.E. & B.D. Johnson 1989. Coagulation on bubbles allows microbial respiration of oceanic dissolved organic carbon. Nature 338, 63–5.

    Article  Google Scholar 

  • Klein, P. & B. Coste 1984. Effects of wind stress variability on nutrient transport into the mixed layer. Deep-Sea Res. 31, 21–37.

    Article  Google Scholar 

  • Koblentz-Mishk, O.J., V.V. Volkovinsky & Y.G. Kabanova 1970. Plankton primary production of the world ocean. In Scientific exploration of the South Pacific, W.S. Wooster (ed.), 183–93. Washington DC: National Academy of Science.

    Google Scholar 

  • Lee, G. & J.L. Bada 1977. Dissolved amino acids in the equatorial Pacific, Sargasso Sea and Biscayne Bay. Limnol. Qceanogr. 22, 502–10.

    Article  Google Scholar 

  • Liebeziet, G., M. Bolter, I.F. Brown & R. Dawson 1980. Dissolved free amino acids and carbohydrates at pycnocline boundaries in the Sargasso Sea and related microbial activity. Oceanol. Acta 3, 357–62.

    Google Scholar 

  • Mackinnon, M.D. 1981. The measurement of organic carbon in sea water. In Marine organic chemistry, E.K. Duursma & R. Dawson (eds), 415–43. Amsterdam: Elsevier.

    Google Scholar 

  • Mantoura, R.F.C. & E.M.S. Woodward 1983. Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications. Geochim. Cosmochim. Acta 47, 1293–309.

    Article  Google Scholar 

  • Martin, J.H., G.A. Knauer, D.M. Karl & W.W. Broenkow 1987. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–85.

    Article  Google Scholar 

  • Menzel, D.W. 1974. Primary productivity, dissolved and particulate organic matter and the sites of oxidation of organic matter. In The sea, E.D. Goldberg (ed.), Vol. 5, 659–78. New York: Wiley.

    Google Scholar 

  • Menzel, D.W. & J.H. Ryther 1970. Distribution and cycling of organic matter in natural waters. Inst. Mar. Sci. Alaska, Occ. Publ. No. 1: 31–54.

    Google Scholar 

  • Meyers-Schulte, K.J. & J.I. Hedges 1986. Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature 321, 61–3.

    Article  Google Scholar 

  • Neinhuis, P.H. 1981. Distribution of organic matter in living marine organisms. In Marine organic chemistry, E.K. Duursma & R. Dawson (eds), 31–69. Amsterdam: Elsevier.

    Google Scholar 

  • Ogura, N. 1977. High molecular weight organic matter in sea water. Mar. Chem. 5, 535–49.

    Article  Google Scholar 

  • Packard, T.T. 1969. The estimation of the oxygen utilization rate in seawater from the activity of the respiratory electron transport system in plankton. Ph.D. Thesis, University of Washington, Seattle.

    Google Scholar 

  • Parrish, C.C. 1988. Dissolved and particulate marine lipid classes: a review. Mar. Chem. 23, 17–40.

    Article  Google Scholar 

  • Parrish, C.C. & P.J. Wangersky 1988. Iatroscan-measured profiles of dissolved and particulate marine lipid classes over the Scotian Slope and in Bedford Basin. Mar. Chem. 23, 1–15.

    Article  Google Scholar 

  • Parsons, T.R. 1975. Particulate organic carbon in the sea. In Chemical oceanography, J.P. Riley & G. Skirrow (eds), Vol. 2, 365–83. London: Academic Press.

    Google Scholar 

  • Redfield, A.C. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In James Johnstone memorial volume, 177–92. Liverpool University Press.

    Google Scholar 

  • Redfield, A.C. 1958. The biological control of chemical factors in the environment. Am. J. Sci. 46, 205–21.

    Google Scholar 

  • Saliot, A. 1981. Natural hydrocarbons in sea water. In Marine organic chemistry, E.K. Duursma & R. Dawson (eds), 327–74. Amsterdam: Elsevier.

    Google Scholar 

  • Sharp, J.H. 1983. The distributions of inorganic nitrogen and dissolved and particulate organic nitrogen in the sea. In Nitrogen in the marine environment, E.J. Carpenter & D.G. Capone (eds), 1–35. New York: Academic Press.

    Google Scholar 

  • Siegenthaler, U. & T. Wenk 1984. Rapid atmosphere CO2 variations and ocean circulation. Nature 308, 624–6.

    Article  Google Scholar 

  • Skopintsev, B.A. 1981. Decomposition of organic matter of plankton, humification and hydrolysis. In Marine organic chemistry, E.K. Duursma & R. Dawson (eds), 125–77. Amsterdam: Elsevier.

    Google Scholar 

  • Spencer, C.P. 1975. The micronutrient elements. In Chemical oceanography, J.P. Riley & G. Skirrow (eds), Vol. 2, 245–300. London: Academic Press.

    Google Scholar 

  • Steeman Neilson, E. 1952. The use of radio-active carbon (C14) for measuring organic production in the sea. J. Cons. Int. Explor. Mer. 18, 117–40.

    Google Scholar 

  • Strickland, J.D.H. 1965. Production of organic matter in the primary stages of the marine food chain. In Chemical oceanography, 1st edn, J.P. Riley & G. Skirrow (eds), Vol. 1, 477–610. London: Academic Press.

    Google Scholar 

  • Suess, E. 1980. Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature 288, 260–3.

    Article  Google Scholar 

  • Sugimura, Y. & Y. Suzuki 1988. A high temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar. Chem. 24, 105–31.

    Article  Google Scholar 

  • Sugugawa, H., N. Handa & K. Ohta 1985. Isolation and characterization of low molecular weight carbohydrates dissolved in seawater. Mar. Chem. 17, 341–62.

    Article  Google Scholar 

  • Sverdrup, H.U., M.W. Johnson & R.H. Fleming 1942. The oceans. New York: Prentice Hall.

    Google Scholar 

  • Takahasi, T., W.S. Broecker & S. Langer 1985. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. 90, 6907–24.

    Article  Google Scholar 

  • Tissot, B.P. & D.H. Weite 1984. Petroleum formation and occurrence. Berlin: Springer-Verlag.

    Google Scholar 

  • Traganza, E.D., V.M. Silva, D.M. Austin, W.L. Hanson & S.H. Bronsink 1983. Nutrient mapping and recurrence of coastal upwelling centres by satellite remote sensing: its implication to primary production and the sediment record. In Coastal upwelling, E. Suess & J. Thiede (eds), 61–83. New York: Plenum.

    Google Scholar 

  • Trask, P. 1939. Organic content of recent marine sediments. In Recent marine sediments, P. Trask (ed.), 428–53. Tulsa, Okla.: American Association of Petroleum Geologists.

    Google Scholar 

  • Tsuchiya, M. 1985. The subthermocline phosphate distribution and circulation in the far eastern equatorial Pacific Ocean. Deep-Sea Res. 32, 299–313.

    Article  Google Scholar 

  • Walsh, G.E. & J. Douglass 1966. Vertical distribution of dissolved carbohydrate in the Sargasso Sea off Bermuda. Limnol. Oceanogr. 11, 406–8.

    Article  Google Scholar 

  • Wangersky, P.J. 1972. The cycle of organic carbon in sea water. Chima 26, 559–64.

    Google Scholar 

  • Watson, A.J. & M. Whitfield 1985. Composition of particles in the global ocean. Deep-Sea Res. 32, 1023–39.

    Article  Google Scholar 

  • Williams, P.J. 1975. Biological and chemical aspects of dissolved organic material in sea water. In Chemical oceanography, J.P. Riley & G. Skirrow (eds), Vol. 2, 301–63. London: Academic Press.

    Google Scholar 

  • Williams, P.J. & L.I. Gordon 1970. Carbon-13: carbon-12 ratios in dissolved and particulate organic matter in the sea. Deep-Sea Res. 17, 19–27.

    Google Scholar 

  • Williams, P.M. 1971. The distribution and cycling of organic matter in the ocean. In Organic compounds in aquatic environments, S.D. Faust & J.V. Hunter (eds), 145–63. New York: Marcel Dekker.

    Google Scholar 

  • Williams, P.M. & E.R.M. Druffel 1987. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330, 246–8.

    Article  Google Scholar 

  • Williams, P.M., H. Oeschger & P. Kinney 1969. Natural radiocarbon activity of dissolved organic carbon in the North-East Pacific Ocean. Nature 224, 256–9.

    Article  Google Scholar 

  • Zafiriou, O.C. 1983. Natural water photochemistry. In Chemical oceanography, J.P. Riley & R. Chester (eds), Vol. 8, 339–79. London: Academic Press.

    Google Scholar 

  • Zafiriou, O.C. 1986. Atmospheric, oceanic, and interfacial photochemistry as factors influencing air-sea exchange fluxes and processes. In The role of air-sea exchange in geochemical cycling, P. Buat-Menard (ed.), 185–207. Dordrecht: Reidel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Roy Chester

About this chapter

Cite this chapter

Chester, R. (1990). Nutrients, organic carbon and the carbon cycle in sea water. In: Marine Geochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9488-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9488-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9490-0

  • Online ISBN: 978-94-010-9488-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics