Skip to main content

The emergence of a synthetic theory of intron evolution

  • Chapter
Origin and Evolution of New Gene Functions

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 10))

Abstract

The debate on the origin and evolution of the intron/exon structure of eukaryotic genes has witnessed profound changes in the last 10 years. Concepts from both the introns-early and introns-late theories have merged into a new synthetic theory of intron evolution. Here I review the debate and discuss the perspectives for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Berget, S.M., C. Moore & P.A. Sharp, 1977. Spliced segments at the 5′ terminus of adenovirus-2 late mRNA. Proc. Natl. Acad. Sci. USA 74: 3171–3175.

    Article  PubMed  CAS  Google Scholar 

  • Bertolaet, B.L. & J.R. Knowles, 1995. Complementation of fragments of triose phosphate isomerase defined by exon boundaries. Biochemistry 34: 5736–5743.

    Article  PubMed  CAS  Google Scholar 

  • Blake, C.C.F., 1978. Do genes-in-pieces imply protein-in-pieces? Nature 273: 267–268.

    Article  Google Scholar 

  • Buehner, M., G.C. Ford, D. Moras, K.W. Olsen & M.G. Rossman, 1973. D-Glyceraldehyde-3-phosphate dehydrogenase: three-dimensional structure and evolutionary significance. Proc. Natl. Acad. Sci. USA 70: 3052–3064.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T., 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 34: 283–284.

    Google Scholar 

  • Chow, L.T., R.E. Gelimas, T.R. Broker & R.J. Roberts, 1977. An amazing sequence arrangement at the 5′ ends of adenovirus-2 messenger RNA. Cell 12: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Cornish-Bowden, A., 1985. Are introns structural elements or evolutionary debris? Nature 313: 434–435.

    Article  PubMed  CAS  Google Scholar 

  • De Souza, S.J., M. Long & W. Gilbert, 1996a. Introns and gene evolution. Genes Cells 1: 493–505.

    Article  PubMed  Google Scholar 

  • De Souza S.J., W. Fischer, J. Logsdon, M. Long, N. Mortin & A. Stoltzfus, 1996b. Intron positions correlate with modules boundaries in ancient proteins. Proc. Natl. Acad. Sci. USA 93: 14632–14636.

    Article  PubMed  Google Scholar 

  • De Souza S.J., W. Fischer, J. Logsdon, M. Long, N. Mortin & A. Stoltzfus, 1997. The origin and evolution of introns: a debate. In: HMS Beagle: A Biomednet Publication (http://news.bmn.com/hmsbeagle/01/cutedge/day1.htm), vol. 1, issue # 1.

    Google Scholar 

  • De Souza S.J., W. Fischer, J. Logsdon, M. Long, N. Mortin & A. Stoltzfus, 1998. Toward a resolution of the introns early/late debate: only phase 0 introns are correlated with the structure of ancient proteins. Proc. Natl. Acad. Sci. USA 95: 5094–5099.

    Article  PubMed  Google Scholar 

  • Dibb, N.J. & A.J. Newman, 1989. Evidence that introns arouse at proto-splice sites. EMBO J. 8: 2015–2021.

    PubMed  CAS  Google Scholar 

  • Doolittle, W.F., 1978. Gene-in-pieces: were they ever together? Nature 272: 581–582.

    Article  Google Scholar 

  • Dorit, R.L., L. Schoenbach & W. Gilbert, 1990. How big is the universe of exons? Science 250: 1377–1382.

    Article  PubMed  CAS  Google Scholar 

  • Fedorov, A. et al., 1992. Analysis of nonuniformity in intron phase distribution. Nucl. Acids Res. 20: 2553–2557.

    Article  PubMed  CAS  Google Scholar 

  • Fedorov, A., X. Cao, S. Saxonov, S.J. De Souza, S.W. Roy & W. Gilbert, 2001. Intron distribution difference for 276 ancient and 131 modern genes suggests the existence of ancient introns. Proc. Natl. Acad. Sci. USA 98: 13177–13182.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., 1978. Why genes in pieces. Nature 271: 501.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., 1986. The RNA World. Nature 319: 618.

    Article  Google Scholar 

  • Gilbert, W., 1987. The Exon Theory of Genes. Cold Spring Harbor Symp. Quant. Biol. 52: 901–905.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W. and S.J. De Souza, 1999. Introns and the RNA world, pp. 221–232 in The RNA World, edited by R.F. Gesteland, T.R. Cech & J.F. Atkins. Cold Spring Harbor Laboratory Press, Colds Spring Harbor, NY.

    Google Scholar 

  • Gilbert, W. & M. Glinias, 1993. On the ancient nature of introns. Gene 135: 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W, S.J. De Souza & M. Long, 1997. Origin of genes. Proc. Natl. Acad. Sci. USA 94: 7698–7703.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., M. Marchionni & G. McKnight, 1986. On the antiquity of introns. Cell 46: 1377–1382.

    Article  Google Scholar 

  • Go, M., 1981. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature 291: 90–93.

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada, C. et al., 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35: 849–857.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, E.O. et al., 1981. The structure of a chromosomal leghaemoglobin gene from soybean. Nature 291: 677–679.

    Article  Google Scholar 

  • Kersanach, R. et al., 1994. Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature 367: 387–389.

    Article  PubMed  CAS  Google Scholar 

  • Kruger, K., P.J. Grabovski, A.J. Zang, J. Sands, D.E. Gottschling & T.R. Cech, 1982. Self-splicing RNA: autoexcision and auto-cyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31: 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., 2001. Evolution of novel genes. Curr. Opin. Genet. Dev. 11:673–680.

    Article  PubMed  CAS  Google Scholar 

  • Long, M. & C. Rosemberg, 2000. Testing the ‘:proto-splice sites’ model of intron origin: evidence from analysis of intron phase correlation. Mol. Biol. Evol. 17: 1789–1796.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., S.J. De Souza & W. Gilbert, 1995a. Evolution of the intron-exon structure of eukaryotic genes. Curr. Opin. Genet. Dev. 5: 774–778.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., C. Rosemberg & W. Gilbert, 1995b. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92: 12495–12499.

    Article  PubMed  CAS  Google Scholar 

  • Long et al., 1998. Relationship between ‘:proto-splice sites’ and intron phases: evidence from dicodon analysis. Proc. Natl. Acad. Sci. USA 95: 219–223.

    Article  PubMed  CAS  Google Scholar 

  • Marchionni, M. & W. Gilbert, 1986. The triose phosphate isomerase gene from maize: introns antedate the plant-animal divergence. Cell 46: 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., 1970. Evolution by Gene Duplication. Springer-Verlag, Berlin.

    Google Scholar 

  • Palmer, J.D. & J.M. Logsdon, 1991. The recent origin of introns. Curr. Opin. Genet. Dev. 1: 470–477.

    Article  PubMed  CAS  Google Scholar 

  • Rossman, M.G. & A. Liljas, 1974. Recognition of structural domains in globular proteins. J. Mol. Biol. 85: 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Roy, S., M. Nosaka, S.J. De Souza & W. Gilbert, 1999. Centripetal modules and ancient introns. Gene 238: 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Shiba, K., 1995. Dissection of an enzyme into two fragments at intron-exon boundaries, pp. 11–21 in Tracing Biological Evolution in Protein and Gene Structures, edited by M. Go & P. Schimmel. Elsevier Science, Amsterdam.

    Google Scholar 

  • Stoltzfus, A., D.F. Spencer, M. Zuker, J.M. Logsdon Jr. & W.F. Doolittle, 1994. Testing the Exon Theory of Genes: the evidence from protein structure. Science 265: 202–207.

    Article  PubMed  CAS  Google Scholar 

  • Stoltzfus, A., J.M. Logsdon Jr., J.D. Palmer & W.F. Doolittle, 1997. Intron sliding and the diversity of intron positions. Proc. Natl. Acad. Sci. USA 94: 10739–10744.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, D. & W. Gilbert, 1985. Genetic engineering in the pre-cambrian: structure of the chicken triose phosphate isomerase gene. Mol. Cell. Biol. 5: 3497–3506.

    Google Scholar 

  • Tittiger, C, S. Whyard & V.K. Walker, 1993. A novel intron site in the triose phosphate isomerase gene from the mosquito Culex tarsalis. Nature 361: 470–472.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Long

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Souza, S.J. (2003). The emergence of a synthetic theory of intron evolution. In: Long, M. (eds) Origin and Evolution of New Gene Functions. Contemporary Issues in Genetics and Evolution, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0229-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0229-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3982-6

  • Online ISBN: 978-94-010-0229-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics