Skip to main content

Cell Cycle Arrest Biomarkers in Kidney Disease

  • Living reference work entry
  • First Online:
  • 223 Accesses

Abstract

Acute kidney injury remains one of the most common and deadly complications of critical illness. Early recognition of this syndrome potentially allows more efficient prophylactic and potentially therapeutic options. The functional biomarkers of kidney injury are very insensitive to the changes of kidney function early in the course of AKI and also nonspecific to the etiology of kidney damage. The critical need for novel biomarkers of AKI resulted in a significant number of efforts which concluded discovery and validation of several new AKI biomarkers. The most recent and indeed the most specific biomarkers of kidney stress are recently discovered and validated and currently approved by the Food and Drug Administration (FDA) for identification of AKI high-risk individuals among ICU patients. These biomarkers, i.e., insulin growth factor-binding protein-7 (IGFBP7) and tissue inhibitor metalloproteinases-2 (TIMP-2), are able to identify high-risk patients in ICU, 12 h before the functional biomarkers are able to detect AKI. These proteins are involved in the pathophysiology and natural history of AKI by halting the progression of the cell cycle following injury during the G1- to S-phase transition. In this review, we will describe the role of the cell cycle during AKI and the relationship between the cell cycle arrest and maladaptive recovery of the kidney following an injury. Then we focus on cell cycle arrest biomarkers and their relationship with AKI, their physiological roles, and finally potential clinical applications.

This is a preview of subscription content, log in via an institution.

Abbreviations

βFGF:

β fibroblast growth factor

AKI:

Acute kidney injury

CDK:

Cyclin-dependent protein kinase

DAMP:

Damage-associated molecular pattern

DDR:

DNA Damage Response

DNA:

Deoxyribonucleic acid

EGF:

Epithelial growth factor

FDA:

Food and Drug Administration

G1 :

Gap 1

G2 :

Gap 2

ICU:

Intensive care unit

IGFBP7:

Insulin-like Growth Factor Binding Protein-7

IL-18:

Interleukin-18

ITG α3 β1:

Integrin α3/β1

KDIGO:

Kidney Disease Improving Global Outcomes

KIM-1:

Kidney injury molecule -1

L-FABP:

Liver fatty acid binding protein

M:

Mitosis

MMP:

Metalloproteinases

NGAL:

Neutrophil gelatinase-associated lipocalin

NGF:

Nerve growth factor

PAMP:

Pathogen-associated molecular pattern

PCNA:

Proliferating cell nuclear antigen

ROS:

Reactive oxygen species

S:

Synthesis

SA-β-gal:

Senescence-associated galactosidase

TIMP-2:

Tissue Inhibitor Metalloproteinases-2

TGF-β:

Transforming growth factor- β

VEGF:

Vascular endothelial growth factor

References

  • Acosta JC, et al. Control of senescence by CXCR2 and its ligands. Cell Cycle. 2008;7(19):2956–9.

    Article  CAS  PubMed  Google Scholar 

  • Ali T, et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol. 2007;18:1292–8.

    Article  CAS  PubMed  Google Scholar 

  • Aydin Z, et al. New horizons in prevention and treatment of ischaemic injury to kidney transplants. Nephrol Dial Transplant. 2007;22(2):342–6.

    Article  PubMed  Google Scholar 

  • Bihorac A, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med. 2014;189(8):932–9.

    Article  CAS  PubMed  Google Scholar 

  • Bourboulia D, et al. Endogenous angiogenesis inhibitor blocks tumor growth via direct and indirect effects on tumor microenvironment. Am J Pathol. 2011;179(5):2589–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burger AM, et al. Essential roles of IGFBP-3 and IGFBP-rP1 in breast cancer. Eur J Cancer. 2005;41(11):1515–27.

    Article  CAS  PubMed  Google Scholar 

  • Catania JM, Chen G, Parrish AR. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol. 2007;292(3):F905–11.

    Article  CAS  PubMed  Google Scholar 

  • Chang H, et al. TIMP-2 promotes cell spreading and adhesion via upregulation of Rap1 signaling. Biochem Biophys Res Commun. 2006;345(3):1201–6.

    Article  CAS  PubMed  Google Scholar 

  • Chawla LS, et al. The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int. n.d.;79(12):p. 1361–9.

    Google Scholar 

  • Chkhotua AB, et al. Up-regulation of cell cycle regulatory genes after renal ischemia/reperfusion: differential expression of p16(INK4a), p21(WAF1/CIP1) and p27(Kip1) cyclin-dependent kinase inhibitor genes depending on reperfusion time. Transpl Int: Off J Eur Soc Organ Transplant. 2006;19(1):72–7.

    Article  CAS  Google Scholar 

  • Cichowski K, Hahn WC. Unexpected pieces to the senescence puzzle. Cell. 2008;133(6):958–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Degeorges A, et al. Distribution of IGFBP-rP1 in normal human tissues. J Histochem Cytochem: Off J Histochem Soc. 2000;48(6):747–54.

    Article  CAS  Google Scholar 

  • Endre ZH, Pickering JW. Acute kidney injury: cell cycle arrest biomarkers win race for AKI diagnosis. Nat Rev Nephrol. 2014. Advance online publication.

    Google Scholar 

  • FDA, FDA allows marketing of the first test to assess risk of developing acute kidney injury. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm412910.htm. 2014.

  • Garton KJ, Gough PJ, Raines EW. Emerging roles for ectodomain shedding in the regulation of inflammatory responses. J Leukoc Biol. 2006;79(6):1105–16.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg GI, et al. Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci U S A. 1989;86(21):8207–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henriet P, Blavier L, Declerck YA. Tissue inhibitors of metalloproteinases (TIMP) in invasion and proliferation. APMIS: Acta Pathol Microbiol Immunol Scand. 1999;107(1):111–9.

    Article  CAS  Google Scholar 

  • Himmelfarb J, et al. Evaluation and initial management of acute kidney injury. Clin J Am Soc Nephrol. 2008;3(4):962–7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoste EA, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10(3):R73.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoste EAJ, et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrol Dial Transplant. 2014;29(11):2054–61.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ichimura T, Mou S. Kidney injury molecule-1 in acute kidney injury and renal repair: a review. Zhong Xi Yi Jie He Xue Bao/J Chin Integr Med. 2008;6(5):533–8.

    Article  CAS  Google Scholar 

  • Ii M, et al. Role of matrix metalloproteinase-7 (Matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med. 2006;231(1):20–7.

    CAS  Google Scholar 

  • Jaworski DM, Pérez-Martínez L. Tissue inhibitor of metalloproteinase-2 (TIMP-2) expression is regulated by multiple neural differentiation signals. J Neurochem. 2006;98(1):234–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joannidis M, et al. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med.

    Google Scholar 

  • Karp G. Cell and molecular biology: concepts and experiments. 4th ed. Hoboken: Wiley; 2005.

    Google Scholar 

  • Kashani K, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(1):R25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim Y, et al. Integrin alpha3beta1-dependent beta-catenin phosphorylation links epithelial Smad signaling to cell contacts. J Cell Biol. 2009;184(2):309–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koyner J, et al. Increased TIMP2•IGFBP7 is associated with increased 9 month mortality in ICU patients at risk for AKI. J Am Soc Nephrol. 2013;24:40A.

    Google Scholar 

  • Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol. 2008;19(1):34–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mannello F, et al. Multiple roles of matrix metalloproteinases during apoptosis. Apoptosis. 2005;10(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, et al. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product. Am J Physiol Renal Physiol. 2010;299(4):F776–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meersch M, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One. 2014;9(3):e93460.

    Article  PubMed Central  PubMed  Google Scholar 

  • Megyesi J, et al. The p53-independent activation of transcription of p21 WAF1/CIP1/SDI1 after acute renal failure. Am J Physiol. 1996;271(6 Pt 2):F1211–6.

    CAS  PubMed  Google Scholar 

  • Melk A, et al. Increased expression of senescence-associated cell cycle inhibitor p16INK4a in deteriorating renal transplants and diseased native kidney. Am J Transplant: Off J Am Soc Transplant Am Soc Transplant Surg. 2005;5(6):1375–82.

    Article  CAS  Google Scholar 

  • Mishra J, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

    Article  CAS  PubMed  Google Scholar 

  • Nagakubo D, et al. A high endothelial venule secretory protein, mac25/angiomodulin, interacts with multiple high endothelial venule-associated molecules including chemokines. J Immunol. 2003;171(2):553–61.

    Article  CAS  PubMed  Google Scholar 

  • Opdenakker G, et al. Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol. 2001;69(6):851–9.

    CAS  PubMed  Google Scholar 

  • Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med. 2007;35:1837–43.

    Article  PubMed  Google Scholar 

  • Pereira RC, Blanquaert F, Canalis E. Cortisol enhances the expression of mac25/insulin-like growth factor-binding protein-related protein-1 in cultured osteoblasts. Endocrinology. 1999;140(1):228–32.

    CAS  PubMed  Google Scholar 

  • Perez-Martinez L, Jaworski DM. Tissue inhibitor of metalloproteinase-2 promotes neuronal differentiation by acting as an anti-mitogenic signal. J Neurosci: Off J Soc Neurosci. 2005;25(20):4917–29.

    Article  CAS  Google Scholar 

  • Peters J-M. SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. Curr Opin Cell Biol. 1998;10(6):759–68.

    Article  CAS  PubMed  Google Scholar 

  • Price PM, Megyesi J, Saf Irstein RL. Cell cycle regulation: repair and regeneration in acute renal failure. Kidney Int. 2004;66(2):509–14.

    Article  CAS  PubMed  Google Scholar 

  • Price PM, Safirstein RL, Megyesi J. The cell cycle and acute kidney injury. Kidney Int. 2009;76(6):604–13.

    Article  PubMed Central  PubMed  Google Scholar 

  • Seo DW, et al. TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell. 2003;114(2):171–80.

    Article  CAS  PubMed  Google Scholar 

  • Seo D-W, et al. Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. J Biol Chem. 2006;281(6):3711–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seo DW, et al. TIMP-2 disrupts FGF-2-induced downstream signaling pathways. Microvasc Res. 2008;76(3):145–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seo DW, et al. An integrin-binding N-terminal peptide region of TIMP-2 retains potent angio-inhibitory and anti-tumorigenic activity in vivo. Peptides. 2011;32(9):1840–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shankland SJ, Wolf G. Cell cycle regulatory proteins in renal disease: role in hypertrophy, proliferation, and apoptosis. Am J Physiol Renal Physiol. 2000;278:F515–29.

    Google Scholar 

  • Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200.

    Article  CAS  PubMed  Google Scholar 

  • Siew ED, et al. Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes. Clin J Am Soc Nephrol. n.d.;5(8):p. 1497–505.

    Google Scholar 

  • Sprenger CC, et al. Over-expression of insulin-like growth factor binding protein-related protein-1(IGFBP-rP1/mac25) in the M12 prostate cancer cell line alters tumor growth by a delay in G1 and cyclin A associated apoptosis. Oncogene. 2002;21(1):140–7.

    Article  CAS  PubMed  Google Scholar 

  • Stefanidakis M, Koivunen E. Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood. 2006;108:1441–50.

    Google Scholar 

  • Stetler-Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. 2008;1:re6.

    Google Scholar 

  • Stetler-Stevenson WG, Krutzsch HC, Liotta LA. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem. 1989;264(29):17374–8.

    CAS  PubMed  Google Scholar 

  • Summary of recommendation statements. Kidney Inter Suppl. 2012;2(1):p. 8–12.

    Google Scholar 

  • Swisshelm K, et al. Enhanced expression of an insulin growth factor-like binding protein (mac25) in senescent human mammary epithelial cells and induced expression with retinoic acid. Proc Natl Acad Sci U S A. 1995;92(10):4472–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka H, et al. Role of the E2F1-p19-p53 pathway in ischemic acute renal failure. Nephron Physiol. 2005;101(2):27–34.

    Article  Google Scholar 

  • Temple S, Raff MC. Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions. Cell. 1986;44(5):773–9.

    Article  CAS  PubMed  Google Scholar 

  • Uchino S, et al. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med. 2006;34:1913–7.

    Article  PubMed  Google Scholar 

  • Uchino S, et al. Transient azotaemia is associated with a high risk of death in hospitalized patients. Nephrol Dial Transplant: Off Publ Eur Dial Transplant Assoc – Eur Ren Assoc. 2010;25(6):1833–9.

    Article  Google Scholar 

  • Usui T, et al. Characterization of mac25/angiomodulin expression by high endothelial venule cells in lymphoid tissues and its identification as an inducible marker for activated endothelial cells. Int Immunol. 2002;14(11):1273–82.

    Article  CAS  PubMed  Google Scholar 

  • Vanmassenhove J, et al. Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transplant. 2012.

    Google Scholar 

  • Vicencio JM, et al. Senescence, apoptosis or autophagy? When a damaged cell must decide its path – a mini-review. Gerontology. 2008;54(2):92–9.

    Article  PubMed  Google Scholar 

  • Wajapeyee N, et al. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132(3):363–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Witzgall R, et al. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest. 1994;93(5):2175–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Q-H, et al. Acute renal failure during sepsis: potential role of cell cycle regulation. J Infect. 2009;58(6):459–64.

    Article  PubMed  Google Scholar 

  • Yang L, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16(5):535–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokoyama T, et al. Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol. 2009;174(6):2096–106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zuo S, et al. IGFBP-rP1 induces p21 expression through a p53-independent pathway, leading to cellular senescence of MCF-7 breast cancer cells. J Cancer Res Clin Oncol. 2012;138(6):1045–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Kellum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Kashani, K., Frazee, E.N., Kellum, J.A. (2015). Cell Cycle Arrest Biomarkers in Kidney Disease. In: Patel, V. (eds) Biomarkers in Kidney Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7743-9_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7743-9_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7743-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics