Skip to main content

Flow Cytometry of Urinary Leukocytes and Lymphocytes as a Biomarker of Renal Disease

  • Living reference work entry
  • First Online:
Biomarkers in Kidney Disease

Abstract

Urine is normally nearly devoid of leukocytes. In various renal diseases however, immune cells can be observed in the urine. Flow cytometry is the state-of-the-art technique for analyzing the quantity and qualities of cells in suspension, making this method an ideal approach for investigating urinary immune cells. Increased amounts of urinary T cells and macrophages are routinely observed in inflammatory renal disease. In contrast, noninflammatory renal syndromes are not associated with an increase in urinary immune cell counts. The composition and the phenotype of the urinary immune cells are reminiscent of the infiltrating cells observed in the respective kidney biopsies, indicating that the urinary immune cells mirror local kidney inflammation. Therefore, they can be used as a “window into the kidney” to investigate the local cellular pathogenesis of renal diseases. Urinary T cells and macrophages have been probed as biomarkers in IgA nephritis, lupus nephritis, ANCA-associated glomerulonephritis, and renal transplant rejection, showing promising results in all entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ANCA:

Anti-neutrophil cytoplasmic antibody

Anti-HLA-DR:

Antibody staining HLA-DR MHCII molecules

Anti-URO-3:

Antibody specific for tubular epithelial cells

BKV:

BK-virus, member of the polyomavirus family, can cause infection of renal transplants

CCR7:

Chemokine receptor of the CC family among others expressed on naïve T cells

CD14:

Marker to identify classical monocytes and macrophages

CD16:

Surface molecule expressed by neutrophil granulocytes and a subset of monocytes/macrophages

CD3:

Identifies T cells which can be subdivided in CD3+CD4+ T helper T cells and CD3+CD8+ T killer T cells

CD4+ effector/memory T cells (EM T cells):

Once naïve T cells encounter their cognate antigen, they differentiate into effector/memory T cells

CD45RO:

Surface molecule expressed by memory T lymphocytes

CD54:

ICAM-1 adhesion molecule

CD56:

Marker expressed on NK T cells

CXCR3:

Chemokine receptor of the CXC family binds CXCL9, 10, and 11. Primarily expressed on Th1 T cells and mediates recruitment of these cells

DAPI:

Fluorescence stain that binds DNA visualizes cell nucleuses in immunofluorescence

Fas-Ligand (Fas-L):

Protein of the TNF family binding mediates apoptosis

GN:

Glomerulonephritis

SLEDAI:

Score reflecting the disease activity of SLE patients

LN:

Lupus nephritis

References

  • Abdulahad WH, Kallenberg CG, Limburg PC, Stegeman CA. Urinary CD4+ effector memory T cells reflect renal disease activity in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 2009;60(9):2830–8.

    Article  CAS  PubMed  Google Scholar 

  • Appel GB, Contreras G, Dooley MA, et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol. 2009;20(5):1103–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohle A, Wehrmann M, Bogenschutz O, et al. The long-term prognosis of the primary glomerulonephritides. A morphological and clinical analysis of 1747 cases. Pathol Res Pract. 1992;188(7):908–24.

    Article  CAS  PubMed  Google Scholar 

  • Bohle A, Wehrmann M, Mackensen-Haen S, et al. Pathogenesis of chronic renal failure in primary glomerulopathies. Nephrol Dial Transplant. 1994;9 Suppl 3:4–12.

    PubMed  Google Scholar 

  • Crop MJ, de Rijke YB, Verhagen PC, Cransberg K, Zietse R. Diagnostic value of urinary dysmorphic erythrocytes in clinical practice. Nephron Clin Pract. 2010;115(3):c203–12.

    Article  PubMed  Google Scholar 

  • Deenitchina SS, Shinozaki M, Hirano T, et al. Association of a T-cell receptor constant alpha chain gene polymorphism with progression of IgA nephropathy in Japanese patients. Am J Kidney Dis. 1999;34(2):279–88.

    Article  CAS  PubMed  Google Scholar 

  • Dolff S, Abdulahad WH, van Dijk MC, Limburg PC, Kallenberg CG, Bijl M. Urinary T cells in active lupus nephritis show an effector memory phenotype. Ann Rheum Dis. 2010;69(11):2034–41.

    Article  PubMed  Google Scholar 

  • Dolff S, Abdulahad WH, Arends S, et al. Urinary CD8+ T-cell counts discriminate between active and inactive lupus nephritis. Arthritis Res Ther. 2013;15(1):R36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisert WG, Wagner E, Beisker W. Analysis of urine sediments after kidney transplantation. Anal Quant Cytol. 1981;3(1):17–20.

    CAS  PubMed  Google Scholar 

  • Enghard P, Humrich JY, Rudolph B, et al. CXCR3+CD4+ T cells are enriched in inflamed kidneys and urine and provide a new biomarker for acute nephritis flares in systemic lupus erythematosus patients. Arthritis Rheum. 2009;60(1):199–206.

    Article  CAS  PubMed  Google Scholar 

  • Enghard P, Rieder C, Kopetschke K, et al. Urinary CD4 T cells identify SLE patients with proliferative lupus nephritis and can be used to monitor treatment response. Ann Rheum Dis. 2014;73(1):277–83.

    Article  CAS  PubMed  Google Scholar 

  • Faurschou M, Starklint H, Halberg P, Jacobsen S. Prognostic factors in lupus nephritis: diagnostic and therapeutic delay increases the risk of terminal renal failure. J Rheumatol. 2006;33(8):1563–9.

    PubMed  Google Scholar 

  • Fiehn C, Hajjar Y, Mueller K, Waldherr R, Ho AD, Andrassy K. Improved clinical outcome of lupus nephritis during the past decade: importance of early diagnosis and treatment. Ann Rheum Dis. 2003;62(5):435–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogazzi GB, Saglimbeni L, Banfi G, et al. Urinary sediment features in proliferative and non-proliferative glomerular diseases. J Nephrol. 2005;18(6):703–10.

    PubMed  Google Scholar 

  • Galante NZ, Camara NO, Kallas EG, Salomao R, Pacheco-Silva A, Medina-Pestana JO. Noninvasive immune monitoring assessed by flow cytometry and real time RT-PCR in urine of renal transplantation recipients. Transpl Immunol. 2006;16(2):73–80.

    Article  CAS  PubMed  Google Scholar 

  • Ginzler EM, Dooley MA, Aranow C, et al. Mycophenolate mofetil or intravenous cyclophosphamide for lupus nephritis. N Engl J Med. 2005;353(21):2219–28.

    Article  CAS  PubMed  Google Scholar 

  • Gomez Jorge JT, Estrada C, Gonzalez ZA, Morales-Otero LA, Lavergne J, Santiago-Delpin EA. Flow cytometric analysis of urine sediment after kidney transplantation. Transplant Proc. 1991;23(2):1764–5.

    CAS  PubMed  Google Scholar 

  • Hotta O, Yusa N, Kitamura, Taguma Y. Urinary macrophages as activity markers of renal injury. Clin Chim Acta. 2000;297(1–2):123–33.

    Article  CAS  PubMed  Google Scholar 

  • Hotta O, Taguma Y, Ooyama M, Yusa N, Nagura H. Analysis of CD14+ cells and CD56+ cells in urine using flow cytometry: a useful tool for monitoring disease activity of IgA nephropathy. Clin Nephrol. 1993;39(6):289–94.

    CAS  PubMed  Google Scholar 

  • Hotta O, Taguma Y, Yusa N, Ooyama M. Analysis of mononuclear cells in urine using flow cytometry in glomerular diseases. Kidney Int Suppl. 1994;47:S117–21.

    CAS  PubMed  Google Scholar 

  • Hotta O, Yusa N, Ooyama M, Taguma Y. Urinary macrophage counts and ratio to T lymphocytes: possible use in differential diagnosis and management of glomerular disease. J Clin Lab Anal. 1996;10(4):205–8.

    Article  CAS  PubMed  Google Scholar 

  • Hotta O, Yusa N, Ooyama M, Unno K, Furuta T, Taguma Y. Detection of urinary macrophages expressing the CD16 (Fc gamma RIII) molecule: a novel marker of acute inflammatory glomerular injury. Kidney Int. 1999;55(5):1927–34.

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Zhang GY, Walters G, et al. Matching T-cell receptors identified in renal biopsies and urine at the time of acute rejection in pediatric renal transplant patients. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2004;4(11):1859–68.

    Article  CAS  Google Scholar 

  • Lee PH, Huang MT, Lee CS. Analysis of urine cytology by flow cytometry in renal transplantation. Transplant Proc. 1992;24(4):1543–4.

    CAS  PubMed  Google Scholar 

  • Lo DJ, Kaplan B, Kirk AD. Biomarkers for kidney transplant rejection. Nat Rev Nephrol. 2014;10(4):215–25.

    Article  CAS  PubMed  Google Scholar 

  • Markovic-Lipkovski J, Muller CA, Risler T, Bohle A, Muller GA. Association of glomerular and interstitial mononuclear leukocytes with different forms of glomerulonephritis. Nephrol Dial Transplant. 1990;5(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  • Mills JA. Systemic lupus erythematosus. N Engl J Med. 1994;330(26):1871–9.

    Article  CAS  PubMed  Google Scholar 

  • Nanni-Costa A, Iannelli S, Vangelista A, et al. Flow cytometry evaluation of urinary sediment in renal transplantation. Transplant Int Off J Eur Soc Organ Transplant. 1992;5 Suppl 1:S8–12.

    Article  Google Scholar 

  • Roberti I, Reisman L. Serial evaluation of cell surface markers for immune activation after acute renal allograft rejection by urine flow cytometry – correlation with clinical outcome. Transplantation. 2001;71(9):1317–20.

    Article  CAS  PubMed  Google Scholar 

  • Roberti I, Reisman L, Burrows L, Lieberman KV. Urine cytology and urine flow cytometry in renal transplantation – a prospective double blind study. Transplantation. 1995;59(4):495–500.

    Article  CAS  PubMed  Google Scholar 

  • Roberti I, Panico M, Reisman L. Urine flow cytometry as a predictor of renal allograft function. Transplantation. 1997a;63(5):781–2.

    Article  CAS  PubMed  Google Scholar 

  • Roberti I, Panico M, Reisman L. Urine flow cytometry as a tool to differentiate acute allograft rejection from other causes of acute renal graft dysfunction. Transplantation. 1997b;64(5):731–4.

    Article  CAS  PubMed  Google Scholar 

  • Sakatsume M, Xie Y, Ueno M, et al. Human glomerulonephritis accompanied by active cellular infiltrates shows effector T cells in urine. J Am Soc Nephrol. 2001;12(12):2636–44.

    CAS  PubMed  Google Scholar 

  • Segerer S, Banas B, Wornle M, et al. CXCR3 is involved in tubulointerstitial injury in human glomerulonephritis. Am J Pathol. 2004;164(2):635–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachowski J, Barth C, Lewandowska-Stachowiak M, Lammerding P, Runowski D, Baldamus CA. Flow cytometric analysis of urine lymphocytes isolated from patients with renal transplants – purification of urine lymphocytes. J Immunol Methods. 1998;213(2):145–55.

    Article  CAS  PubMed  Google Scholar 

  • van Doesum WB, Abdulahad WH, van Dijk MC, et al. Characterization of urinary CD4(+) and CD8(+) T cells in kidney transplantation patients with polyomavirus BK infection and allograft rejection. Transplant Infect Dis Off J Transplant Soc. 2014;16(5):733–43.

    Article  Google Scholar 

  • Yu DS, Sun GH, Lee SS, Wu CJ, Ma CP, Chang SY. Flow-cytometric measurement of cellular changes in urine: a simple and rapid method for perioperatively monitoring patients after kidney transplantation. Urol Int. 1999;62(3):143–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Enghard .

Editor information

Editors and Affiliations

Definitions

ANCA-associated glomerulonephritis

ANCA autoantibody-induced systemic vasculitis affecting the kidneys and causing renal inflammation.

Flow cytometry

Method for quantitative and qualitative analysis of large amounts of suspended cells. Usually, cells are stained with fluorochrome-coupled antibodies, which are detected using lasers and detectors for specific wavelengths.

Hematuria

The presence of blood in the urine.

IgA nephropathy

One of the most frequent forms of glomerulonephritis caused by deposition of IgA in the mesangium.

Lupus nephritis (LN)

Renal inflammation associated with the systemic autoimmune disease SLE.

Proliferative nephritis

Renal disease associated with the proliferation of cells in the glomeruli due to inflammation of the kidneys.

Proteinuria

The presence of elevated amounts of protein in the urine.

Renal transplant rejection

Immunologic reaction against the renal graft, a frequent cause of graft failure.

SLE

Systemic lupus erythematosus, a systemic autoimmune disease characterized by the presence of anti-nuclear autoantibodies and inflammation of several potential target organs.

Urine sediment

Microscopic analysis of the insoluble contents of urine after centrifugation.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Enghard, P., Rudolph, B., Klocke, J., Riemekasten, G. (2015). Flow Cytometry of Urinary Leukocytes and Lymphocytes as a Biomarker of Renal Disease. In: Patel, V. (eds) Biomarkers in Kidney Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7743-9_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7743-9_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7743-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics