Skip to main content

The Concept of a Preniche for Localization of Future Metastases

  • Chapter
  • First Online:
Book cover Tumors of the Central Nervous System, Volume 13

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 13))

Abstract

The hypothesis of metastatic niches (advanced kind of “seed and soil” hypothesis) is very promising concept. It has been proposed to supplement the metastatic niche concept with a stage of “preniche” that determines the site of development of a premetastatic niche and of a subsequent metastasis. The “preniche” includes all cellular and molecular events in the site of a prospective metastasis preceding the entrance of myeloid progenitor cells. The preniche integrates an activation of vascular endothelium of the microcirculatory vessels of target organs in the site of a future metastasis under conditions of chronic persistent productive inflammation that can be induced by cytokines from the primary tumor and independently of it. The endothelium activation is responsible for adhesion and clustering of the recruited myeloid progenitor cells and also for the retention of cells of malignant tumors. The preniche easily arises in organs enriched with organ-specific macrophages (lungs, liver, brain, etc.) where the endothelium is predisposed for intensive recruiting of myeloid progenitor cells of macrophages, especially under conditions of inflammation. The feature of CNS is especial population of macrophage cells (microglia) which could be activated and to form metastatic niches without recruiting myeloid progenitor cells and preniche formation as well as bone morrow. Nevertheless, inflammatory prenicha seems to be the factor enhancing brain metastases by the recruiting of additional niche cells and cells of a tumor. Introduction of the preniche concept allows us to avoid difficulties associated with the development of the metastatic niche concept, especially concerning the problem of organ-preferential localization of metastases, and to make potential approaches for preventing metastasizing in some oncologic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alix-Panabieres C, Riethdorf S, Pantel K (2008) Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res 14:5013–5021

    Article  CAS  PubMed  Google Scholar 

  • Bidard FC, Pierga JY, Vincent-Salomon A, Poupon MF (2008) A “class action” against the microenvironment: do cancer cells cooperate in metastasis? Cancer Metastasis Rev 27:5–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conrad AT, Dittel BN (2011) Taming of macrophage and microglial cell activation by microRNA-124. Cell Res 21:213–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Danton GH, Dietrich WD (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62:127–136

    CAS  PubMed  Google Scholar 

  • Doerschuk CM (2001) Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation 8:71–88

    CAS  PubMed  Google Scholar 

  • Duchnowska R, Szczylik C (2005) Central nervous system metastases in breast cancer patients administered trastuzumab. Cancer Treat Rev 31:312–318

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Joshi N, Choi H, Ryu S, Hahn M, Catena R, Sadik H, Argani P, Wagner P, Vahdat LT, Port JL, Stiles B, Sukumar S, Altorki NK, Rafii S, Mittal V (2012) Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res 72:1–11

    Article  Google Scholar 

  • Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neurooncol 75:5–14

    Article  PubMed  Google Scholar 

  • Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105

    Article  PubMed  Google Scholar 

  • Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, Shibuya M, Akira S, Aburatani H, Maru Y (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10:1349–1355

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  • Kwidzinski E, Mutlu LK, Kovac AD, Bunse J, Goldmann J, Mahlo J, Aktas O, Zipp F, Kamradt T, Nitsch R, Bechmann I (2003) Self-tolerance in the immune privileged CNS: lessons from the entorhinal cortex lesion model. J Neural Transm Suppl 65:29–49

    Article  PubMed  Google Scholar 

  • Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M (2003) Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42:139–148

    Article  PubMed  Google Scholar 

  • Lewis CA, Manning J, Rossi F, Krieger C (2012) The neuroinflammatory response in ALS: the roles of microglia and T cells. Neurol Res Int 2012:803701

    PubMed Central  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Ock J, Jeong J, Choi WS, Lee WH, Kim SH, Kim IK, Suk K (2007) Regulation of Toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia. J Neurosci Res 85:1989–1995

    Article  CAS  PubMed  Google Scholar 

  • Pawelek JM, Chakraborty AK (2008) Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8:377–386

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Rafii S, Lyden D (2008) Inflammation joins the “niche”. Cancer Cell 14:347–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Sem Cancer Biol 21:139–146

    Article  CAS  Google Scholar 

  • Perelmuter VM, Manskikh VN (2012) Preniche as missing link of the metastatic niche concept explaining organ-preferential metastasis of malignant tumors and the type of metastatic disease. Biochemistry (Mosc) 77:111–118

    Article  CAS  Google Scholar 

  • Pestalozzi BC, Zahrieh D, Price KN, Holmberg SB, Lindtner J, Collins J, Crivellari D, Fey MF, Murray E, Pagani O, Simoncini E, Castiglione-Gertsch M, Gelber RD, Coates AS, Goldhirsch A, International Breast Cancer Study Group (IBCSG) (2006) Identifying breast cancer patients at risk for central nervous system (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann Oncol 17:935–944

    Article  CAS  PubMed  Google Scholar 

  • Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rezaie P, Dean A, Male D, Ulfig N (2005) Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb Cortex 15:938–949

    Article  PubMed  Google Scholar 

  • Ronzoni M, Manzoni M, Mariucci S, Loupakis F, Brugnatelli S, Bencardino K, Rovati B, Tinelli C, Falcone A, Villa E, Danova M (2010) Circulating endothelial cells and endothelial progenitors as predictive markers of clinical response to bevacizumab-based first-line treatment in advanced colorectal cancer patients. Ann Oncol 21:2382–2389

    Article  CAS  PubMed  Google Scholar 

  • Scott L, Priestly G, Papayannopoulou T (2003) Deletion of alpha4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol Cell Biol 23:9349–9360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ, Stohlman S, Ransohoff R (2007) Evidence for synaptic stripping by cortical microglia. Glia 55:360–368

    Article  PubMed  Google Scholar 

  • Valli’eres L, Sawchenko PE (2003) Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J Neurosci 23:5197–5207

    Google Scholar 

  • Wels J, Kaplan RN, Rafii S, Lyden D (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22:559–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    Article  CAS  PubMed  Google Scholar 

  • Wong J, Johnston B, Lee SS, Bullard DC, Smith CW, Beaudet al, Kubes P (1997) A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J Clin Invest 99:2782–2790

    Google Scholar 

  • Wu L, Vremec D, Ardavin C, Winkel K, Suss G, Georgiou H, Maraskovsky E, Cook W, Shortman K (1995) Mouse thymus dendritic cells: kinetics of development, changes in surface markers during maturation. Eur J Immunol 25:418–425

    Article  CAS  PubMed  Google Scholar 

  • Yoo J, Lee SH, Lym KI, Park SY, Yang SH, Yoo CY, Jung JH, Kang SJ, Kang CS (2012) Immunohistochemical expression of DCUN1D1 in non- small cell lung carcinoma: it’s relation to brain metastasis. Cancer Res Treat 44:57–62

    Article  PubMed Central  PubMed  Google Scholar 

  • Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V, Konig J, Lehrach H, Nietfeld W, Trendelenburg G (2007) TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun 359:574–579

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasiliy N. Manskikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Perelmuter, V.M., Manskikh, V.N. (2014). The Concept of a Preniche for Localization of Future Metastases. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 13. Tumors of the Central Nervous System, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7602-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7602-9_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7601-2

  • Online ISBN: 978-94-007-7602-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics