Skip to main content

ASIMO and Humanoid Robot Research at Honda

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

One of the major characteristics of robot development at Honda is “knowing and learning from humans.” In 1986, Honda started a research on robot whose bipedal walking was modeled after humans.

In this chapter, capabilities of Honda humanoid robots such as mobility, task-performing, and communication are introduced, and technologies which realized the above capabilities are explained.

With walk stabilization control technology which includes ground reaction force control, model ZMP control, and foot landing position control, biped robots could stably walk on uneven or slanted floors. Gait generation technology, which limits slipping and spinning, made it possible to assure dynamic stability during running.

In terms of task performance, by fusion of physical capabilities with recognition of the external environment using sensors of various kinds, the robot completed several tasks such as handing over a tray, pushing a cart, and pouring a drink.

Voice and image recognition technologies and an abundance of physical expressions enabled robots to interact with people in a natural way.

In order to behave properly in a real-world environment that is constantly changing, autonomous behavior generation technology has been developed. A system architecture called the intelligence loop was devised for this technology. The robot demonstrated this autonomy in two field experiments in the science museum where the robot made autonomous explanation to the visitors.

As applications of the robotics technology created in the course of humanoid robot research, High-Access Survey Robot which was sent to Fukushima Daiichi Nuclear Power Station and new mobility devices are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M. Hirose, K. Ogawa, Honda humanoid robots development. Phil. Trans. R. Soc. A 365, 11–19 (2007). https://doi.org/10.1098/rsta.2006.1917

    Article  Google Scholar 

  2. Honda Worldwide | Honda Robotics, http://world.honda.com/HondaRobotics/. Accessed 13 Mar 2015

  3. K. Hirai, Current and future perspective of Honda humanoid robot, in Proceedings of IROS, 1997, Grenoble, France pp. 500–508. https://doi.org/10.1109/IROS.1997.655059

  4. K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka, The development of Honda humanoid robot, in Proceedings of ICRA, 1998, Leuven, Belgium pp. 1321–1326. https://doi.org/10.1109/ROBOT.1998.677288

  5. M. Vukobratovic, J. Stepanenko, On the stability of anthropomorphic systems. Math. Biosci. 15, 1–37 (1972). https://doi.org/10.1016/0025-5564(72)90061-2

    Article  MATH  Google Scholar 

  6. M. Hirose, T. Takenaka, Development of the humanoid robot ASIMO. Honda R&D Tech. Rev. 13(1), 1–6 (2001)

    Google Scholar 

  7. S. Shigemi, Y. Kawaguchi, T. Yoshiike, K. Kawabe, N. Ogawa, Development of new ASIMO. Honda R&D Tech. Rev. 18(1), 38–44 (2006)

    Google Scholar 

  8. T. Takenaka, T. Matsumoto, T. Yoshiike, S. Shirokura, Running gait generation for biped robot. Honda R&D Tech. Rev. 20(2), 101–107 (2008)

    Google Scholar 

  9. T. Takenaka, T. Matsumoto, T. Yoshiike, Real time motion generation and control for biped robot -1st report: walking gait pattern generation, in Proceedings of IROS, 2009, St. Louis, USA pp. 1084–1091. https://doi.org/10.1109/IROS.2009.5354662

  10. T. Takenaka, T. Matsumoto, T. Yoshiike, S. Shirokura, Real time motion generation and control for biped robot -2nd report: running gait pattern generation, in Proceedings of IROS, 2009, St. Louis, USA pp. 1092–1099. https://doi.org/10.1109/IROS.2009.5354654

  11. T. Takenaka, T. Matsumoto, T. Yoshiike, Real time motion generation and control for biped robot -3rd report: dynamics error compensation, in Proceedings of IROS, 2009, St. Louis, USA pp. 1594–1600. https://doi.org/10.1109/IROS.2009.5354542

  12. T. Takenaka, T. Matsumoto, T. Yoshiike, T. Hasegawa, S. Shirokura, H. Kaneko, A. Orita, Real time motion generation and control for biped robot -4th report: integrated balance control, in Proceedings of IROS, 2009, St. Louis, USA pp. 1601–1608. https://doi.org/10.1109/IROS.2009.5354522

  13. K. Nakadai, H.G. Okuno, H. Nakajima, Y. Hasegawa, H. Tsujino, Design and implementation of robot audition system “HARK” – Open source software for listening to three simultaneous speakers. Adv. Robot. 24, 739–761 (2010). https://doi.org/10.1163/016918610X493561

    Article  Google Scholar 

  14. S. Shigemi, K. Kawabe, T. Nakamura, Development of new ASIMO-realization of autonomous machine. Honda R&D Techn. Rev. 24(1), 37–45 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Shigemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Shigemi, S. (2017). ASIMO and Humanoid Robot Research at Honda. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_9-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_9-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics