Skip to main content

Humanlike Hand Mechanism

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference
  • 450 Accesses

Abstract

Capabilities of the robotic hands are limited when compared to the dexterity of human hands, and implementing some of the key features of the human biomechanics may lead to drastic improvements in robotic manipulation. We present two design ideas for mechanisms of the robotic hands inspired by human hand biomechanics. The first idea is to realize variable moment arms in the robotic fingers by using a tendon network and bone shapes. We show that in a robotic hand called, the ACT Hand, humanlike variable moment arm is achieved, and this implementation has positive implementations for the control of the hand for manipulation. Another idea is a novel design for joint with passive compliance that is inspired by biomechanical properties of the human hands. The design consists of a compliant material and a set of pulleys that rotate and stretch the material as the joint rotates, and experimental results with a 3-D printed prototype show that the joint exhibits human-like properties. Implementation of these two designs has shown promising results, and our ongoing work involved design and testing of control strategies for manipulation that take advantage of these design features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D. Accoto, N.L. Tagliamonte, G. Carpino, F. Sergi, M. Di Palo, E. Guglielmelli, pVEJ: a modular passive viscoelastic joint for assistive wearable robots, in IEEE International Conference on Robotics and Automation (IEEE, 2012), pp. 3361–3366

    Google Scholar 

  2. K.N. An, Y. Ueba, E.Y. Chao, W.P. Cooney, R.I. Linscheid, Tendon excursion and moment arm of index finger muscles. J. Biomech. 16, 419–425 (1983)

    Article  Google Scholar 

  3. G. Berselli, A. Guerra, G. Vassura, A.O. Andrisano, An engineering method for comparing selectively compliant joints in robotic structures. IEEE/ASME Trans. Mechatron. 19(6), 1882–1895 (2014)

    Article  Google Scholar 

  4. P.W. Brand, K.C. Cranor, J.C. Ellis, Tendon and pulleys at the metacarpophalangeal joint of a finger. J. Bone Joint Surg. 57, 779–784 (1975)

    Article  Google Scholar 

  5. G. Carpino, D. Accoto, M. Di Palo, N.L. Tagliamonte, F. Sergi, E. Guglielmelli, Design of a rotary passive viscoelastic joint for wearable robots, in IEEE International Conference on Rehabilitation Robotics (ICORR) (IEEE, 2011), pp. 1–6

    Google Scholar 

  6. C. Connolly, Prosthetic hands from touch bionics. Ind. Robot Int. J. 35(4), 290–293 (2008)

    Article  Google Scholar 

  7. A.D. Deshpande, R. Balasubramanian, J. Ko, Y. Matsuoka, Acquiring variable moment arms for index finger using a robotic testbed. IEEE Trans. Biomed. Eng. 57(8), 2034–2044 (2010)

    Article  Google Scholar 

  8. A.D. Deshpande, J. Ko, D. Fox, Y. Matsuoka, Control strategies for the index finger of a tendon-driven hand. Int. J. Robot. Res. 32(1), 115–128 (2013)

    Article  Google Scholar 

  9. A.D. Deshpande, Z. Xu, M.J.V. Weghe, B.H. Brown, J. Ko, L.Y. Chang, D.D. Wilkinson, S.M. Bidic, Y. Matsuoka, Mechanisms of the anatomically correct testbed hand. IEEE/ASME Trans. Mechatron. 18(1), 238–250 (2013)

    Article  Google Scholar 

  10. N.K. Fowler, A.C. Nicol, B. Condon, D. Hadley, Method of determination of three dimensional index finger moment arms and tendon lines of action using high resolution MRI scans. J. Biomech. 34, 791–797 (2001)

    Article  Google Scholar 

  11. I.N. Gaiser, C. Pylatiuk, S. Schulz, A. Kargov, R. Oberle, T. Werner, The fluidhand III: a multifunctional prosthetic hand. JPO: J. Prosthetics Orthot. 21(2), 91–96 (2009)

    Google Scholar 

  12. N. Hogan, Impedance control: an approach to manipulation: part II? Implementation. J. Dyn. Syst. Meas. Control. 107(1), 8–16 (1985)

    Article  MATH  Google Scholar 

  13. D.G. Kamper, H.C. Fischer, E.G. Cruz, Impact of finger posture on mapping from muscle activation to joint torque. Clin. Biochem. 21, 361–369 (2006)

    Google Scholar 

  14. P.-H. Kuo, A.D. Deshpande, Muscle-tendon units provide limited contributions to the passive stiffness of the index finger metacarpophalangeal joint. J. Biomech. 45(15), 2531–2538 (2012)

    Article  Google Scholar 

  15. P.-H. Kuo, A.D. Deshpande, A novel joint design for robotic hands with humanlike nonlinear compliance. J. Mech. Robot. 8(2), 021004 (2016)

    Google Scholar 

  16. P.-H. Kuo, J. Hayes, A.D. Deshpande, Design and performance of a motor-driven mechanism to conduct experiments with the human index finger. J. Mech. Robot. 7 031010-1–031010-10 (2014)

    Google Scholar 

  17. T.D. Niehues, P. Rao, A.D. Deshpande, Compliance in parallel to actuators for improving stability of robotic hands during grasping and manipulation. Int. J. Robot. Res. (IJRR) 34, 256–269 (2015)

    Article  Google Scholar 

  18. L.U. Odhner, L.P. Jentoft, M.R. Claffee, N. Corson, Y. Tenzer, R.R. Ma, M. Buehler, R. Kohout, R.D. Howe, A.M. Dollar, A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33(5), 736–752 (2014)

    Article  Google Scholar 

  19. N.S. Pollard, R.C. Gilbert, Tendon arrangement and muscle force requirements for humanlike force capabilities in a robotic finger, in Proceedings of IEEE International Conference on Robotics and Automation, 2002

    Google Scholar 

  20. M.V. Weghe, M. Rogers, M. Weissert, Y. Matsuoka, The ACT hand: design of the skeletal structure, in Proceedings of the 2004 IEEE International Conference on Robotics and Automation, 2004

    Google Scholar 

  21. D.D. Wilkinson, M.V. Weghe, Y. Matsuoka, An extensor mechanism for an anatomical robotic hand, in IEEE International Conference on Robotics & Automation, 2003

    Google Scholar 

  22. Z. Xu, V. Kumar, Y. Matsuoka, E. Todorov, Design of an anthropomorphic robotic finger system with biomimetic artificial joints, in IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (IEEE, 2012), pp. 568–574

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish D. Deshpande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Deshpande, A.D. (2017). Humanlike Hand Mechanism. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_88-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_88-1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics