Skip to main content

Actuator Modeling and Simulation

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

Humanoid robot actuators are highly integrated mechatronic systems. They exist in a broad variety of dimensions. Their operating principle can be based on electric, hydraulic, or pneumatic power. In any case, their modeling and simulation involve knowledge across multiple physical domains such as mechanics and electro-, fluid-, and thermodynamics. The domains are mutually coupled through energy transfer and conversion processes. The substantial degree of complexity arising from all these aspects renders the high-fidelity modeling and simulation of humanoid robot actuators a challenging task. This chapter equips the reader starting to explore this field with an overview over modeling formalisms and software tools suitable to govern this complexity. Moreover, it introduces the fundamental working principles behind electric, hydraulic, and pneumatic actuation. The experienced reader will find information about advanced topics on parasitic effects that are frequently encountered when working in depth on the design and control of humanoid robot actuators. In addition, the chapter covers compliant actuation, which is currently a very active research direction toward a new generation of humanoid robots capable of solving real-world tasks in unstructured dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. N.J. Ahmad, F. Khorrami, Adaptive control of systems with backlash hysteresis at the input, in Proceedings of the American Control Conference, 1999, vol. 5 (IEEE, 1999), pp. 3018–3022

    Google Scholar 

  2. A. Akers, M. Gassman, R.J. Smith, Hydraulic Power System Analysis (CRC/Taylor & Francis, Boca Raton, 2006). oCLC:ocm64083948

    Google Scholar 

  3. F. Al-Bender, V. Lampaert, J. Swevers, The generalized Maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. Autom. Control 50(11), 1883–1887 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Alfayad, Robot humanoïde hydroïd, Editions Universitaires Europeennes, 2011

    Google Scholar 

  5. I.S. Beiker others, VDI 2206 – Entwicklungsmethodik für mechatronische Systeme.pdf, 2001

    Google Scholar 

  6. G. Bertotti, I.D. Mayergoyz (eds.), The Science of Hysteresis, 1st edn. (Academic, Amsterdam/Boston, 2006)

    MATH  Google Scholar 

  7. R.G. Budynas, J.K. Nisbett, Shigley’s Mechanical Engineering Design, 9th edn. McGraw-Hill Series in Mechanical Engineering (McGraw-Hill, New York, 2011)

    Google Scholar 

  8. G. Cheng, S. Hyon, J. Morimoto, A. Ude, J.G. Hale, G. Colvin, W. Scroggin, S.C. Jacobsen, CB: a humanoid research platform for exploring neuroscience. Adv. Robot. 21(10), 1097–1114 (2007)

    Article  Google Scholar 

  9. G.K. Costa, N. Sepehri, Hydrostatic Transmissions and Actuators: Operation, Modelling and Applications (Wiley, Chichester, 2015)

    Google Scholar 

  10. F. Daerden, D. Lefeber, Pneumatic artificial muscles: actuators for robotics and automation. Eur. J. Mech. Environ. Eng. 47(1), 11–21 (2002)

    Google Scholar 

  11. V. De Negri, J. Filho, A. de Souza, A design method for hydraulic positioning systems, in Proceedings of the National Conference on Fluid Power (NCFP), vol 51, 2008, p. 669

    Google Scholar 

  12. N.B. Do, A.A. Ferri, O.A. Bauchau, Efficient simulation of a dynamic system with LuGre friction. J. Comput. Nonlinear Dyn. 2(4), 281 (2007). https://doi.org/10.1115/1.2754304

  13. S. Eppinger, W. Seering, Understanding bandwidth limitations in robot force control, in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, 1987, pp. 904–909

    Google Scholar 

  14. S.D. Eppinger, W.P. Seering, Three dynamic problems in robot force control, in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 1989), pp. 392–397

    Google Scholar 

  15. P. Fritzson, P. Bunus, Modelica-a general object-oriented language for continuous and discrete-event system modeling and simulation, in Proceedings of the 35th Annual Simulation Symposium (IEEE, 2002), pp. 365–380

    Google Scholar 

  16. W.C. Gan, L. Qiu, Torque and velocity ripple elimination of AC permanent magnet motor control systems using the internal model principle. IEEE/ASME Trans. Mechatron. 9(2), 436–447 (2004). https://doi.org/10.1109/TMECH.2004.828626

  17. R. Ham, T. Sugar, B. Vanderborght, K. Hollander, D. Lefeber, Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009). https://doi.org/10.1109/MRA.2009.933629

  18. V. Hassani, T. Tjahjowidodo, T.N. Do, A survey on hysteresis modeling, identification and control. Mech. Syst. Signal Process. 49(1–2), 209–233 (2014). https://doi.org/10.1016/j.ymssp.2014.04.012

    Article  Google Scholar 

  19. J. Hurst, A. Rizzi, D. Hobbelen, Series elastic actuation: Potential and pitfalls, in International Conference on Climbing and Walking Robots, 2004

    Google Scholar 

  20. S.M. Hwang, J.B. Eom, G.B. Hwang, W.B. Jeong, Y.H. Jung, Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing. IEEE Trans. Magn. 36(5), 3144–3146 (2000)

    Article  Google Scholar 

  21. S.H. Hyon, D. Suewaka, Y. Torii, N. Oku, H. Ishida, Development of a fast torque-controlled hydraulic humanoid robot that can balance compliantly, in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), 2015, pp. 576–581. https://doi.org/10.1109/HUMANOIDS.2015.7363420

  22. K. Janschek, Mechatronic Systems Design. (Springer, Berlin/Heidelberg, 2012)

    Google Scholar 

  23. H. Kaminaga, R. Masumura, T. Ko, M. Komagata, S. Sato, S. Yorita, Y. Nakamura, Mechanism and control of wholebody electro-hydrostatic actuator driven humanoid robot hydra, in The 2016 International Symposium on Experimental Robotics (ISER’2016), 2016

    Google Scholar 

  24. K.F. Laurin-Kovitz, J.E. Colgate, S.D. Carnes, Design of components for programmable passive impedance, in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 1991), pp. 1476–1481

    Google Scholar 

  25. W. Leonhard, Control of Electrical Drives, 3rd edn. (Werner Leonhard, Berlin/Heidelberg/New York, 2001)

    Book  Google Scholar 

  26. Y. Liu, Z.Q. Zhu, D. Howe, Commutation-torque-ripple minimization in direct-torque-controlled PM brushless DC drives. IEEE Trans. Ind. Appl. 43(4), 1012–1021 (2007). https://doi.org/10.1109/TIA.2007.900474

  27. H.E. Merritt (ed.), Hydraulic Control Systems (John Wiley and Sons, New York, 1967)

    Google Scholar 

  28. R. Merzouki (ed.), Intelligent Mechatronic Systems: Modeling, Control and Diagnosis (Springer, London/New York, 2013). oCLC:ocn828059950

    Google Scholar 

  29. G. Nelson, A. Saunders, N. Neville, B. Swilling, J. Bondaryk, D. Billings, C. Lee, R. Playter, M. Raibert, PETMAN: a humanoid robot for testing chemical protective clothing. J. Robot. Soc. Jpn. 30(4), 372–377 (2012). https://doi.org/10.7210/jrsj.30.372

  30. M. Nordin, J. Galic’, P.O. Gutman, New models for backlash and gear play. Int. J. Adapt. Control Signal Process. 11(1), 49–63 (1997)

    Google Scholar 

  31. N. Paine, S. Oh, L. Sentis, Design and control considerations for high-performance series elastic actuators. IEEE/ASME Trans. Mechatron. 19(3), 1080–1091 (2014). https://doi.org/10.1109/TMECH.2013.2270435

  32. M. Raibert, Legged Robots That Balance (MIT Press, 1986)

    MATH  Google Scholar 

  33. D.W. Robinson, J.E. Pratt, D.J. Paluska, G.A. Pratt, Series elastic actuator development for a biomimetic walking robot, in Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 1999), pp. 561–568

    Google Scholar 

  34. W. Roozing, Z. Li, G. Medrano-Cerda, D. Caldwell, N. Tsagarakis, Development and control of a compliant asymmetric antagonistic actuator for energy efficient mobility. IEEE/ASME Trans. Mechatron. 21(2), 1–1 (2016). https://doi.org/10.1109/TMECH.2015.2493359

  35. B. Siciliano (ed.), Robotics: Modelling, Planning and Control. Advanced Textbooks in Control and Signal Processing (Springer, London, 2009). oCLC:ocn144222188

    Google Scholar 

  36. T. Tjahjowidodo, F. Al-Bender, H. Van Brussel, Friction identification and compensation in a DC motor. IFAC Proc. Volumes 38(1), 554–559 (2005)

    Article  Google Scholar 

  37. B. Tondu, Artificial muscles for humanoid robots, in M. Hackel (ed.), Humanoid Robots, Human-Like Machines (I-Tech Education and Publishing, Rijeka, 2007)

    Google Scholar 

  38. N. Tsagarakis, D.G. Caldwell, Improved modelling and assessment of pneumatic muscle actuators, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’2000), vol. 4 (IEEE, 2000), pp. 3641–3646

    Google Scholar 

  39. A.J. van der Schaft, D. Jeltsema, Port-Hamiltonian Systems Theory: An Introductory Overview (Now Publishers Inc., Massachusetts, 2014). oCLC:881738825

    Google Scholar 

  40. B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G, Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, L. Visser, S. Wolf, Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013). https://doi.org/10.1016/j.robot.2013.06.009

  41. B. Verrelst, R. Van Ham, B. Vanderborght, D. Lefeber, F. Daerden, M. Van Damme, Second generation pleated pneumatic artificial muscle and its robotic applications. Adv. Robot. 20(7), 783–805 (2006)

    Article  Google Scholar 

  42. T.J. Viersma (ed.), Analysis, Synthesis, and Design of Hydraulic Servosystems and Pipelines. (Elsevier Scientific Publishing Company, 1980)

    Google Scholar 

  43. S. Wolf, G. Grioli, O. Eiberger, W. Friedl, M. Grebenstein, H. Hoppner, E. Burdet, D.G. Caldwell, R. Carloni, M.G. Catalano, D. Lefeber, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, B. Vanderborght, L.C. Visser, A. Bicchi, A. Albu-Schaffer, Variable stiffness actuators: review on design and components. IEEE/ASME Trans. Mechatron. 21(5), 2418–2430 (2016). https://doi.org/10.1109/TMECH.2015.2501019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Malzahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Malzahn, J., Barasuol, V., Janschek, K. (2017). Actuator Modeling and Simulation. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_75-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_75-1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics