Skip to main content

Historical Perspective of Humanoid Robot Research in the Americas

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

One of the key aspects of humanoid robotics is the inspiration from the human body, from human perceptuomotor skills, and from robots operating in human environments with human-made tools. Evolution did develop the human body to be very suitable for its domain of operation, and on top, humans did further tailor their environments to suit their own bodies and abilities. Thus, in order to conduct research on humanoid robots, one possible entry point is to study human behavior and neural information processing. Psychology and neuroscience are research fields with exactly this interest, but often have a strong descriptive element in their research. However, humanoid robotics requires in addition computational theories and causal modeling in order to be able to synthesize behavior with an actual physical system – in the spirit of Richard Feynman’s famous quote “What I cannot create, I do not understand.” As one of the many possibilities of approaching a historical perspective of humanoid robotics research in the USA, it appears illuminating to start with some key events of computational neuroscience which happened at a time, where it was hardly possible to build useful humanoid robots, and how several branches of humanoid robotics research developed out of this initial work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D. Marr, Vision – A Computational Investigation into the Human Representation and Processing of Visual Information (W.H. Freeman, San Francisco, 1982)

    Google Scholar 

  2. M. Brady, J.M. Hollerbach, T.L. Johnson, M.T. Mason, T. Lozano-Pérez, Robot Motion: Planning and Control (MIT Press, Cambridge, 1982)

    Google Scholar 

  3. T. Flash, N. Hogan, The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)

    Article  Google Scholar 

  4. N. Hogan, An organizing principle for a class of voluntary movements. J. Neurosci. 4(11), 2745–2754 (1984)

    Article  Google Scholar 

  5. C.H. An, C.G. Atkeson, J.M. Hollerbach, Model-Based Control of a Robot Manipulator (MIT Press, Cambridge, MA, 1987)

    Google Scholar 

  6. E.W. Aboaf, C.G. Atkeson, D. Reinkensmeyer, Task-level robot learning. Presented at the Proceedings of the IEEE international conference on robotics and automation, Philadelphia, 24–29 April (IEEE, Piscataway, 1988), pp. 331–348

    Google Scholar 

  7. I.M. Jordan, Rumelhart, Supervised learning with a distal teacher. Cogn. Sci. 16, 307–354 (1992)

    Article  Google Scholar 

  8. S. Schaal, C.G. Atkeson, Memory-based robot learning. Presented at the IEEE international conference on robotics and automation, San Diego, vol. 3, 1994a, pp. 2928–2933

    Google Scholar 

  9. F.A. Mussa Ivaldi, S.F. Giszter, Vector field approximation: A computational paradigm for motor control and learning. Biol. Cybern. 67(6), 491–501 (1992)

    Article  Google Scholar 

  10. M. Raibert, Legged Robots That Balance (MIT Press, Cambridge, MA, 1986)

    MATH  Google Scholar 

  11. J.J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice Hall, Englewood Cliffs, 1991)

    MATH  Google Scholar 

  12. S. Schaal, C.G. Atkeson, Robot juggling: implementation of memory-based learning. IEEE Control Syst. Mag. 14(1), 57–71 (1994b)

    Article  Google Scholar 

  13. M. Bühler, D.E. Koditschek, Analysis of a simplifed hopping robot. Presented at the IEEE conference on robotics and automation, 1988, pp. 845–865

    Google Scholar 

  14. M. Bühler, D.E. Koditschek, From stable to chaotic juggling: theory, simulation, and experiments. Presented at the IEEE international conference on robotics and automation, Cincinnati, 1990, pp. 845–865

    Google Scholar 

  15. A.A. Rizzi, D.E. Koditschek, Progress in spatial robot juggling. Presented at the proceedings of IEEE international conference on robotics and automation, Nice, 1992, pp. 59–71

    Google Scholar 

  16. C.G. Atkeson, J. Hale, M. Kawato, S. Kotosaka, F. Pollick, M. Riley, et al., Using Humanoid Robots to Study Human Behaviour. IEEE Intell. Syst. 15(4), 46–56 (2000)

    Article  Google Scholar 

  17. C.G. Atkeson, S. Schaal, Learning tasks from a single demonstration. Presented at the IEEE international conference on robotics and automation (ICRA97), Albuquerque, 20–25 April, vol. 2 (IEEE, Piscataway, 1997), pp. 1706–1712

    Google Scholar 

  18. S. Schaal, Learning from demonstration, in Presented at the Advances in Neural Information Processing Systems 9, ed. by M.C. Mozer, M. Jordan, T. Petsche (MIT Press, Cambridge, MA, 1997), pp. 1040–1046

    Google Scholar 

  19. S. Schaal, C.G. Atkeson, S. Vijayakumar, Real-time robot learning with locally weighted statistical learning. Presented at the international conference on robotics and automation (ICRA2000), San Francisco, Apr 2000, 2000

    Google Scholar 

  20. J. Nakanishi, R. Cory, M. Mistry, J. Peters, S. Schaal, Comparative experiments on task space control with redundancy resolution. Presented at the IEEE international conference on intelligent robots and systems (IROS 2005), Edmonton, 2–6 Aug 2005, pp. 3901–3908

    Google Scholar 

  21. J. Nakanishi, T. Fukuda, D.E. Koditschek, A brachiating robot controller. IEEE Trans. Robot. Autom. 16(2), 109–123 (2000)

    Article  Google Scholar 

  22. A.J. Ijspeert, J. Nakanishi, S. Schaal, Learning attractor landscapes for learning motor primitives. Adv. Neural Inf. Proces. Syst. 15, 1547–1554 (2003)

    Google Scholar 

  23. A. Billard, S. Schaal, Robust learning of arm trajectories through human demonstration. Presented at the IEEE international conference on intelligent robots and systems (IROS 2001), Maui, 29 Oct–3 Nov (IEEE, Piscataway, 2001)

    Google Scholar 

  24. A. Billard, S. Schaal. Computational elements of robot learning by imitation. Presented at the American Mathematical Society central section meeting, Madison, 12–13 Oct 2002 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  25. A. Ude, T. Shibata, C.G. Atkeson, Real-time visual system for interaction with a humanoid robot. Robot. Auton. Syst. 37(225), 115 (2001)

    Article  Google Scholar 

  26. S. Vijayakumar, A. D’Souza, S. Schaal, Incremental online learning in high dimensions. Neural Comput. 17(12), 2602–2634 (2005)

    Article  MathSciNet  Google Scholar 

  27. S. Vijayakumar, A. D’Souza, T. Shibata, J. Conradt, S. Schaal, Statistical learning for humanoid robots. Auton. Robot. 12(1), 59–72 (2002)

    Article  Google Scholar 

  28. T. Shibata, H. Tabata, S. Schaal, M. Kawato, A model of smooth pursuit in primates based on learning the target dynamics. Neural Netw. 18(3), 213–224 (2005)

    Article  Google Scholar 

  29. S. Kotosaka, S. Schaal, Synchronized robot drumming by neural oscillator. J. Robot. Soc. Jpn 19(1), 116–123 (2001)

    Article  Google Scholar 

  30. G. Cheng, S.-H. Hyon, J. Morimoto, A. Ude, G. Colvin, W. Scroggin, S.C. Jacobsen, CB: a humanoid research platform for exploring neuroscience. Presented at the humanoid robots, 2006 6th IEEE-RAS international conference on, 2006, pp. 182–187

    Google Scholar 

  31. A. Herzog, L. Righetti, F. Grimminger, P. Pastor, S. Schaal, Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. Presented at the proceedings of the IEEE international conference on intelligent robotics systems, Chicago, 2014, pp. 1–8. http://www-clmc.usc.edu/publications/H/herzog-IROS2014.pdf

  32. B.J. Stephens, C.G. Atkeson, Dynamic Balance Force Control for compliant humanoid robots. Presented at the intelligent robots and systems (IROS), 2010 IEEE/RSJ international conference on, 2010, pp. 1248–1255. https://doi.org/10.1109/IROS.2010.5648837

  33. R.A. Brooks, C. Breazeal, M. Marjanovic, B. Scassellati, M. Williamson, The cog project: building a humanoid robot, in Lecture Notes in Computer Science, (Springer, Berlin, 1999)

    Google Scholar 

  34. B. Scassellati, Theory of mind for a humanoid robot. Auton. Robot. 12, 13–24 (2002)

    Article  Google Scholar 

  35. C. Breazeal, B. Scassellati, Robots that imitate humans. Trends Cogn. Sci. 6(11), 481–487 (2002)

    Article  Google Scholar 

  36. F. Gubina, H. Hemami, R.B. McGhee, On the Dynamic Stability of Biped Locomotion. IEEE Trans. Biomed. Eng. BME-21(2), 102–108 (1974). https://doi.org/10.1109/TBME.1974.324294

    Article  Google Scholar 

  37. O. Khatib, A united approach to motion and force control of robot manipulators: The operational space formulation. Int. J. Robot. Res. 31, 43–53 (1987)

    Google Scholar 

  38. O. Khatib, O. Brock, K. Chang, F. Conti, D. Ruspini, L. Sentis, Robotics & interactive simulation. Commun. ACM 45, 46–51 (2002)

    Article  Google Scholar 

  39. O. Khatib, L. Sentis, J. Park, J. Warrent, Whole-body dynamic behavior and control of human-like robots. Int. J. Human. Robot. 1(1), 1–15 (2004)

    Article  Google Scholar 

  40. L. Sentis, O. Khatib, Task-oriented control of humanoid robots through prioriization. Presented at the IEEE-RAS/RSJ international conference on humanoid robots, Santa Monica, 10–12 Nov 2004

    Google Scholar 

  41. A. Goswami, Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18(6), 523–533 (1999)

    Article  Google Scholar 

  42. J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery. Presented at the humanoid robots, 2006 6th IEEE-RAS international conference on, 2006, pp. 200–207

    Google Scholar 

  43. S.H. Collins, M.B. Wiggin, G.S. Sawicki, Reducing the energy cost of human walking using an unpowered exoskeleton. Nature, 1–15 (2015). https://doi.org/10.1038/nature14288

  44. J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, M. Kawato, A framework for learning biped locomotion with dynamic movement primitives. Presented at the IEEE-RAS/RSJ international conference on humanoid robots (humanoids 2004), Los Angeles, 10–12 Nov (IEEE, Santa Monica, 2004)

    Google Scholar 

  45. J.E. Pratt, G.A. Pratt, Intuitive control of a planar bipedal walking robot. ICRA (1998)

    Google Scholar 

  46. R. Tedrake, T.W. Zhang, S. Seung, Stochastic policy gradient reinforcement learning on a simple 3D biped. Presented at the proceedings of the international conference on intelligent robots and systems, Sendai, Oct 2004, pp. 2849–2854

    Google Scholar 

  47. D.W. Robinson, J.E. Pratt, D.J. Paluska, G.A. Pratt, Series elastic actuator development for a biomimetic walking robot. Presented at the 1999 IEEE/ASME international conference on advanced intelligent mechatronics, IEEE, 1999, pp. 561–568. https://doi.org/10.1109/AIM.1999.803231

  48. J.E. Pratt, C.-M. Chew, A. Torres, P. Dilworth, G.A. Pratt, Virtual model control – an intuitive approach for bipedal locomotion. I. J. Robot. Res. 20, 129–143 (2001)

    Article  Google Scholar 

  49. T. McGeer, Passive dynamic walking. Int. J. Robot. Res. 9(2), 633–643 (1990)

    Article  Google Scholar 

  50. S. Collins, A. Ruina, R. Tedrake, M. Wisse, Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)

    Article  Google Scholar 

  51. M. Srinivasan, A. Ruina, Computer optimization of a minimal biped model discovers walking and running. Nature 439(7072), 72–75 (2005). https://doi.org/10.1038/nature04113

    Article  Google Scholar 

  52. E.R. Westervelt, G. Buche, J.W. Grizzle, Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. Int. J. Robot. Res. 23(6), 559 (2004)

    Article  Google Scholar 

  53. J. Bohren, R.B. Rusu, E.G. Jones, E. Marder-Eppstein, C. Pantofaru, M. Wise, et al., Towards autonomous robotic butlers – lessons learned with the PR2. ICRA (2011)

    Google Scholar 

  54. R. Platt Jr., A.H. Fagg, R.A. Grupen, Manipulation gaits – sequences of grasp control tasks. ICRA (2004)

    Google Scholar 

  55. V. Sukhoy, A. Stoytchev, Learning to detect the functional components of doorbell buttons using active exploration and multimodal correlation. Presented at the humanoid robots (humanoids), 2010 10th IEEE-RAS international conference on, 2010, pp. 572–579. https://doi.org/10.1109/ICHR.2010.5686327

  56. G. Metta, P. Fitzpatrick, Better vision through manipulation. Adapt. Behav. 11(2), 109–128 (2003). https://doi.org/10.1177/10597123030112004

    Article  Google Scholar 

  57. A. Edsinger-Gonzales, J. Weber, Domo – a force sensing humanoid robot for manipulation research. Humanoids (2004)

    Google Scholar 

  58. W. Bluethmann, R. Ambrose, M. Diftler, S. Askew, E. Huber, M. Goza, et al., Robonaut: a robot designed to work with humans in space. Auton. Robot. 14(2–3), 179–197 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this entry

Cite this entry

Schaal, S. (2018). Historical Perspective of Humanoid Robot Research in the Americas. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_143-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_143-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics