Skip to main content

Applications of IMU in Humanoid Robot

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference
  • 1837 Accesses

Abstract

Humanoid robot is one of the most advanced subjects in robotics research field. As a recently developed multi-axis sensor, the inertial measurement unit (IMU) is an ideal sensor for measuring the attitude of a robot. Thus IMU plays an extremely important role in humanoid robots.

In this chapter, the basis of IMU, which is divided into two parts, accelerometer and gyroscope, is introduced first. Both of the parts are described in detail, which include the composition, working principle, characteristic, classification, and function of IMU. Then several main signal processing methods of IMU are introduced. After that, the passage summarizes and analyzes the current development of IMU and introduces several typical products that integrate IMU. The main body of this passage introduces the application of IMU in humanoid robots in detail. The first part is about the role of IMU in control and gait planning for biped robot when it walks in uneven terrain. The second part describes IMU’s effect on the vibration monitoring and control of biped robots. Then anti-disturbance walking, fall detection, and dynamic balance control are introduced. Finally, the article summarizes the development trend of IMU applied in humanoid robots and analyzes possible problems that may occur in the future research of IMU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. A. Hornung, K.M. Wurm, M. Bennewitz, Humanoid robot localization in complex indoor environments, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei (2010), pp. 1690–1695

    Google Scholar 

  2. S. Nasiri, A critical review of MEMS gyroscopes technology and commercialization status (2010), Available online:http://invensense.com/mems/gyro/documents/whitepapers/MEMSGyroComp.pdf. Accessed 25 May 2012

  3. L. Wei, J. Wang, Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference systems. J. Navig. 66(1), 99–113 (2013)

    Article  Google Scholar 

  4. S. Sabatelli et al., A double-stage Kalman filter for orientation tracking with an integrated processor in 9-D IMU. IEEE Trans. Instrum. Meas. 62(3), 590–598 (2013)

    Article  Google Scholar 

  5. M. Gienger, K. Loffler, F. Pfeiffer, Walking control of a biped robot based on inertial measurement, in Proceedings. of the Third IARP International Workshop on Humanoid and Human Friendly Robotics, Ibaraki (2002), pp. 22–29

    Google Scholar 

  6.  https://www.xsens.com

  7. D. Kuehn, M. Schilling, T. Stark, M. Zenzes, F. Kirchner, System design and testing of the hominid robot Charlie. J. Field Robot. 34(4), 666–703 (2017)

    Article  Google Scholar 

  8.  http://www.analog.com

  9. Y. Tian et al., Upper limb motion tracking with the integration of IMU and Kinect. Neurocomputing 159, 207–218 (2015)

    Article  Google Scholar 

  10. V. Prahlad, G. Dip, C. Meng-Hwee, Disturbance rejection by online ZMP compensation. Robotica 26(1), 9–17 (2008)

    Article  Google Scholar 

  11. C. Fu, Perturbation recovery of biped walking by updating the footstep, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL (2014), pp. 2509–2514

    Google Scholar 

  12. S.H. Hyon, G. Cheng, Disturbance rejection for biped humanoids, in Proceedings of IEEE International Conference on Robotics and Automation, Roma (2007), pp. 2668–2675

    Google Scholar 

  13. S.-H. Hyon, J.G. Hale, G. Cheng, Full-body compliant human–humanoid interaction: balancing in the presence of unknown external forces. IEEE Trans. Robot. 23(5), 884–898 (2007)

    Article  Google Scholar 

  14. Y. Kamogawa, K. Yamada, H. Masuta, H.-O. Lim, Stability control and pattern generation for biped humanoid robot, in Proceedings of 13th International Conference on Control, Automation and Systems (ICCAS), Busan (2013), pp. 910–915

    Google Scholar 

  15. R. Renner, S. Behnke, Instability detection and fall avoidance for a humanoid using attitude sensors and reflexes, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing (2006), pp. 2967–2973

    Google Scholar 

  16. J. Hill, F. Fahimi, Active disturbance rejection for walking bipedal robots using the acceleration of the upper limbs. Robotica 33(2), 264–281 (2015)

    Article  Google Scholar 

  17. C. Fu, Perturbation recovery of biped walking by updating the footstep, in Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL (2014), pp. 2509–2514

    Google Scholar 

  18. Y. Kamogawa, et al., Stability control and pattern generation for biped humanoid robot, in Proceedings of 2013 13th International Conference on Control, Automation and Systems, Busan (2013), pp. 910–915

    Google Scholar 

  19. H. Diedam, et al., Online walking gait generation with adaptive foot positioning through linear model predictive control, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice (2008), pp. 1121–1126

    Google Scholar 

  20. A. Herdt et al., Online walking motion generation with automatic footstep placement. Adv. Robot. 24(5–6), 719–737 (2010)

    Article  Google Scholar 

  21. J. Urata, et al., Online walking pattern generation for push recovery and minimum delay to commanded change of direction and speed, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve (2012), pp. 3411–3416

    Google Scholar 

  22. M. Friedmann, J. Kiener, S. Petters, H. Sakamoto, D. Thomas, O. von Stryk, Versatile, high-quality motions and behavior control of humanoid soccer robots, in Proceedings of Workshop on Humanoid Soccer Robots of the 2006 IEEE-RAS International Conference on Humanoid Robots, Genova (2006), pp. 9–16

    Google Scholar 

  23. S. Sano, M. Yamada, N. Uchiyama, S. Takagi, Point-contact type foot with springs and posture control for biped walking on rough terrain, in Proceedings of IEEE International Workshop on Advanced Motion Control, Trento (2008), pp. 480–485

    Google Scholar 

  24. S.-J. Yi, B.-T. Zhang, D. Hong, D.D. Lee, Practical bipedal walking control on uneven terrain using surface learning and push recovery, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, California (2011), pp. 3963–3968

    Google Scholar 

  25. C.-L. Shih, C.-J. Chiou, The motion control of a statically stable biped robot on an uneven floor. IEEE Trans. Syst. Man Cybern. B Cybern. 28(2), 244–249 (1998)

    Article  Google Scholar 

  26. J. Yi, Q. Zhu, R. Xiong, W. Jun, Walking algorithm of humanoid robot on uneven terrain with terrain estimation. Int. J. Adv. Robot. Syst. 13 (2016), pp. 1–13

    Google Scholar 

  27. S.-J. Yi, B.-T. Zhang, D.D. Lee, Online learning of uneven terrain for humanoid bipedal walking. AAAI 10, 1639–1644 (2010)

    Google Scholar 

  28. J.-Y. Kim, I.-W. Park, O. Jun-Ho, Walking control algorithm of biped humanoid robot on uneven and inclined floor. J. Intell. Robot. Syst. 48(4), 457–484 (2007)

    Article  Google Scholar 

  29. S. Kajita, F. Asano, M. Morisawa, K. Miura, K. Kaneko, F. Kanehiro, K. Yokoi, Vertical vibration suppression for a position controlled biped robot, in Proceedings of IEEE International Conference on Robotics and Automation, Karlsruhe (2013), pp. 1637–1642

    Google Scholar 

  30. J.-H. Kim, J.-Y. Kim, J.-H. Oh, Adaptive walking pattern generation and balance control of the passenger-carrying biped robot, HUBO FX-1, for variable passenger weights. Auton. Robot. 30(4), 427–443 (2011)

    Article  Google Scholar 

  31. Y. Kuroki, M. Fujita, T. Ishida, K. Nagasaka, J. Yamaguchi, A small biped entertainment robot exploring attractive applications, in Proceedings of IEEE International Conference on Robotics & Automation, Taipei (2003), pp. 471–476

    Google Scholar 

  32. T. Ishida, Y. Kuroki, Development of sensor system of a small biped entertainment robot, in Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, LA (2004), pp. 648–653

    Google Scholar 

  33. H.J. Luinge, P.H. Veltink, Inclination measurement of human movement using a 3-D accelerometer with autocalibration. IEEE Trans. Neural Syst. Rehabil. Eng., 112–121 (2004)

    Google Scholar 

  34. J. Leavitt, A. Sideris, J.E. Bobrow, High bandwidth tilt measurement using low-cost sensors. IEEE/ASME Trans. Mechatronics, 320–327 (2006)

    Google Scholar 

  35. M. Jun, S.I. Roumeliotis, G.S. Sukhatme, State estimation of an autonomous helicopter using Kalman filtering, in Proceedings of IEE/RSJ International Conference on Intelligent Robots and Systems, Kyongju (1999), pp. 1346–1353

    Google Scholar 

  36. J. Li, et al. Real-time foot attitude estimation for a humanoid robot based on inertial sensors and force sensor, in Proceedings of IEEE International Conference on Robotics and Biomimetics, Bangkok (2008), pp. 365–370

    Google Scholar 

  37. B. Siciliano, O. Khatib, Springer Handbook of Robotics (Springer Science & Business Media, Berlin 2008)

    Google Scholar 

  38. J. Ruiz-del Solar, J. Moya, I. Parra-Tsunekawa, Fall detection and management in biped humanoid robots, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK (2010), pp. 3323–3328

    Google Scholar 

  39. O. Hȍhn, W. Gerth, Probabilistic balance monitoring for bipedal robots. Int. J. Robot. Res. 28(2), 245–256 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Huang, Q., Zhang, S. (2017). Applications of IMU in Humanoid Robot. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_106-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_106-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics