Skip to main content

Redirecting and Modulating Rationalizations of Tumor-Immanent Normative Functions in Castration-Resistant Prostate Cancer

  • Chapter
  • First Online:
Evolution-adjusted Tumor Pathophysiology:

Abstract

With a median survival period of approximately 19 months, therapeutic options for patients with castration-resistant prostate cancer (CRPC) remain limited. In a multicenter phase II trial, 65 patients with histologically confirmed CRPC continuously received a biomodulatory regimen during the 6-month core period for redirecting tumor-promoting normative notions, i.e. angiogenesis, inflammation, immune response and the osteoplastic process. Treatment comprised daily doses of imatinib mesylate, pioglitazone, etoricoxib, treosulfan, and dexamethasone. The primary endpoint was prostate-specific antigen (PSA) response, defined as a confirmed reduction in serum PSA of ≥  50  % in patients with a baseline value of ≥  5 ng/mL. Responders could enter an extension phase until disease progression or presence of intolerable toxicity. Mean PSA was 45.3 ng/mL at baseline, and 77  % of the patients had a PSA doubling time of <  3 months. Twenty three (37.7  %) out of the 61 evaluable patients were PSA responders, who showed a mean PSA decrease from 278.9 ± 784.1 ng/mL at baseline to 8.8 ± 11.6 ng/mL at the final visit (24 weeks or LOCF). The remaining 38 non-responders included 14 patients (23.0  %) with stable disease. In one center, 6 out of 16 patients showed nearly complete resolution of bone metastases. Out of the 947 adverse events observed, 57.6  % were suspected to be drug-related, 13.8  % led to dose adjustment or permanent discontinuation of the study medication, and 40.2  % required concomitant medication. Twenty seven patients experienced serious adverse events. This novel multi-targeted approach led to an impressive PSA response rate of 37.7  % in CRPC patients despite the fact that individual components had shown limited efficacy when applied on their own. The good PSA response rate and the manageable toxicity profile suggest that this combination may offer an alternative treatment option to present therapeutic regimens.

Clinical trial registration: NCT00427999 (http://clinicaltrials.gov/ct2/show/NCT00427999)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osanto S, Van Poppel H (2012) Emerging novel therapies for advanced prostate cancer. Ther Adv Urol 4:3–12

    Article  PubMed  Google Scholar 

  2. Ryan CJ, Smith MR, de Bono JS et al (2013) COU-AA-302 Investigators. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 368(2):138–48. doi: 10.1056/NEJMoa1209096. Epub 2012 Dec 10

    Article  PubMed  CAS  Google Scholar 

  3. Logothetis CJ, Basch E, Molina A et al (2012) Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer: exploratory analysis of data from the COU-AA-301 randomised trial. Lancet Oncol 13(12):1210–1217. doi: 10.1016/S1470–2045(12)70473-4. Epub 2012 Nov 9

    Article  PubMed  CAS  Google Scholar 

  4. Reichle A, Vogt T (2008) Systems biology: a therapeutic target for tumor therapy. Cancer Microenviron 1:159–170

    Article  PubMed  Google Scholar 

  5. Reichle A, Hildebrandt GC (2009) Principles of modular tumor therapy. Cancer Microenviron 2(Suppl 1):227–237

    Article  PubMed  Google Scholar 

  6. Reichle A (2009) Tumor systems need to be rendered usable for a new action-theoretical abstraction: the starting point for novel therapeutic options. Curr Cancer Ther Rev 5:232–242

    Article  CAS  Google Scholar 

  7. Mimeault M, Johansson SL, Batra SK (2012) Pathobiological implications of the expression of EGFR, pAkt, NF-Φ#186;B and MIC-1 in prostate cancer stem cells and their progenies. PLoS ONE 7:e31919

    Article  PubMed  CAS  Google Scholar 

  8. Azevedo A, Cunha V, Teixeira AL et al (2011) IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World J Clin Oncol 2:384–396

    Article  PubMed  Google Scholar 

  9. Jain G, Cronauer MV, Schrader M et al (2012) NF-κB signaling in prostate cancer: a promising therapeutic target? World J Urol 30:303–310

    Article  PubMed  CAS  Google Scholar 

  10. Huber ML, Haynes L, Parker C et al (2012) Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J Natl Cancer Inst 104:273–279

    Article  PubMed  CAS  Google Scholar 

  11. Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. New Engl J Med 363:411–422

    Article  PubMed  CAS  Google Scholar 

  12. Tang S, Moore ML, Grayson JM et al (2012) Increased CD8 + T cell function following castration and immunization is countered by parallel expansion of regulatory T cells. Cancer Res 72:1975–1985

    Article  PubMed  CAS  Google Scholar 

  13. Scher HI, Halabi S, Tannock I et al (2008) Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 26:1148–1159

    Article  PubMed  Google Scholar 

  14. Ustach CV, Huang W, Conley-LaComb MK et al (2010) A novel signaling axis of matriptase/PDGF-D/ß-PDGFR in human prostate cancer. Cancer Res 70:9631–9640

    Article  PubMed  CAS  Google Scholar 

  15. Mathew P, Thall PF, Jones D et al (2004) Platelet-derived growth factor receptor inhibitor imatinib mesylate and docetaxel: a modular phase I trial in androgen-independent prostate cancer. J Clin Oncol 22:3323–3329

    Article  PubMed  CAS  Google Scholar 

  16. Meyer S, Vogt T, Landthaler M et al (2010) Cyclooxygenase 2 (COX2) and peroxisome proliferator-activated receptor gamma (PPARG) are stage-dependent prognostic markers of malignant melanoma. In: Reichle A (ed) From molecular to modular tumor therapy. Springer, Berlin, pp 433–465

    Chapter  Google Scholar 

  17. Nakamura Y, Suzuki T, Sugawara A et al (2009) Peroxisome proliferator-activated receptor gamma in human prostate carcinoma. Pathol Int 59:288–293

    Article  PubMed  Google Scholar 

  18. Lyles BE, Akinyeke TO, Moss PE et al (2009) Thiazolidinediones regulate expression of cell cycle proteins in human prostate cancer cells via PPARgamma-dependent and PPARgamma independent pathways. Cell Cycle 8:268–277

    Article  PubMed  CAS  Google Scholar 

  19. Matsuyama M, Yoshimura R (2008) Peroxisome proliferator-activated receptor-gamma is a potent target for prevention and treatment in human prostate and testicular cancer. PPAR Res 2008:249849

    Article  PubMed  Google Scholar 

  20. Smith MR, Manola J, Kaufman DS et al (2004) Rosiglitazone versus placebo for men with prostate carcinoma and a rising serum prostate-specific antigen level after radical prostatectomy and/or radiation therapy. Cancer 101:1569–1574

    Article  PubMed  CAS  Google Scholar 

  21. Shockley KR, Lazarenko OP, Czernik PJ et al (2009) PPARgamma2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J Cell Biochem 106:232–246

    Article  PubMed  CAS  Google Scholar 

  22. Storlie JA, Buckner JC, Wiseman GA et al (1995) Prostate specific antigen levels and clinical response to low dose dexamethasone for hormone-refractory metastatic prostate carcinoma. Cancer 76:96–100

    Article  PubMed  CAS  Google Scholar 

  23. Nishimura K, Nonomura N, Yasunaga Y et al (2000) Low doses of oral dexamethasone for hormone-refractory prostate carcinoma. Cancer 89:2570–2576

    Article  PubMed  CAS  Google Scholar 

  24. Khor LY, Bae K, Pollack A et al (2007) COX-2 expression predicts prostate-cancer outcome: analysis of data from the RTOG 92-02 trial. Lancet Oncol 8:912–920

    Article  PubMed  CAS  Google Scholar 

  25. Meyer S, Vogt T, Landthaler M et al (2009) Cyclooxygenase 2 (COX2) and peroxisome proliferator-activated receptor gamma (PPARG) are stage-dependent prognostic markers of malignant melanoma. PPAR Res 2009:848645

    PubMed  Google Scholar 

  26. Emmenegger U, Chow A, Bocci G (2010) The biomodulatory capacities of low-dose metronomic chemotherapy: complex modulation of the tumor microenvironment. In: Reichle A (ed) From molecular to modular tumor therapy. Springer, Berlin, pp 433–465

    Google Scholar 

  27. Feyerabend S, Feil G, Krug J et al (2007) Cytotoxic effects of treosulfan on prostate cancer cell lines. Anticancer Res 27(4B):2403–2408

    PubMed  CAS  Google Scholar 

  28. Nelius T, Rinard K, Filleur S (2011) Oral/metronomic cyclophosphamide-based chemotherapy as option for patients with castration-refractory prostate cancer: review of the literature. Cancer Treat Rev 37:444–455

    Article  PubMed  CAS  Google Scholar 

  29. Glode LM, Barqawi A, Crighton F et al (2003) Metronomic therapy with cyclophosphamide and dexamethasone for prostate carcinoma. Cancer 98:1643–1648

    Article  PubMed  CAS  Google Scholar 

  30. Walter B, Rogenhofer S, Vogelhuber M (2010) Modular therapy approach in metastatic castration-refractory prostate cancer. World J Urol 28:745–750

    Article  PubMed  CAS  Google Scholar 

  31. Heidenreich A, Aus G, Bolla M et al (2008) EAU guidelines on prostate cancer. Eur Urol 53:68–80

    Article  PubMed  Google Scholar 

  32. Berthold DR, Pond GR, Soban F et al (2008) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 26:242–245

    Article  PubMed  CAS  Google Scholar 

  33. Tannock IF, de Wit R, Berry WR et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512

    Article  PubMed  CAS  Google Scholar 

  34. Petrylak DP, Tangen CM, Hussain MH et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520

    Article  PubMed  CAS  Google Scholar 

  35. Morant R, Bernhard J, Dietrich D et al (2004) Capecitabine in hormone-resistant metastatic prostatic carcinoma—a phase II trial. Br J Cancer 90:1312–1317

    Article  PubMed  CAS  Google Scholar 

  36. Pitteri SJ, Kelly-Spratt KS, Gurley KE et al (2011) Tumor microenvironment-derived proteins dominate the plasma proteome response during breast cancer induction and progression. Cancer Res 71:5090–5100

    Article  PubMed  CAS  Google Scholar 

  37. Paulitschke V, Kunstfeld R, Gerner C et al (2010) Secretome proteomics, a novel tool for Biomarkers discovery and for guiding biomodulatory therapy approaches. In: Reichle A (ed) From molecular to modular tumor therapy. Springer, Berlin, pp 405–431

    Chapter  Google Scholar 

  38. Bundscherer A, Hafner C (2010) Breathing new life into old drugs. Indication discovery by systems-directed therapy. In: Reichle A (ed) In from molecular to modular tumor therapy. Springer, Berlin

    Google Scholar 

  39. Oprea TI, Bauman JE, Bologa CG et al (2011) Drug repurposing from an academic perspective. Drug DiscovToday Ther Strateg 8(3–4):61–69

    Article  Google Scholar 

  40. Berry DA (2011) Adaptive clinical trials in oncology. Nat Rev Clin Oncol 9:199–207

    Article  PubMed  Google Scholar 

  41. Reichle A, Hildebrandt GH (2010) The comparative uncovering of tumor systems biology by modularly targeting tumor-associated inflammation. In: Reichle A (ed) From molecular to modular tumor therapy. Springer, Berlin, pp 287–303

    Chapter  Google Scholar 

  42. Ashida S, Orloff MS, Bebek G et al (2012) Integrated analysis reveals critical genomic regions in prostate tumor microenvironment associated with clinicopathologic phenotypes. Clin Cancer Res 18:1578–1587

    Article  PubMed  CAS  Google Scholar 

  43. Squire JA, Park PC, Yoshimoto M et al (2011) Prostate cancer as a model system for genetic diversity in tumors. Adv Cancer Res 112:183–216

    Article  PubMed  CAS  Google Scholar 

  44. Gu G, Brothman AR (2011) Cytogenomic aberrations associated with prostate cancer. Cancer Genet 204:57–67

    Article  PubMed  CAS  Google Scholar 

  45. Bellmunt J (2008) Chemotherapy for prostate cancer in senior adults: are we treating the elderly or the frail? Eur Urol 55:1310–1312

    Article  PubMed  Google Scholar 

  46. Walter LC, Covinsky KE (2001) Cancer screening in elderly patients: a framework for individualized decision making. JAMA 285:2750–2756

    Article  PubMed  CAS  Google Scholar 

  47. Koroukian SM, Murray P, Madigan E (2006) Comorbidity, disability, and geriatric syndromes in elderly cancer patients receiving home health care. J Clin Oncol 24:2304–2310

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Reichle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vogelhuber, M. et al. (2013). Redirecting and Modulating Rationalizations of Tumor-Immanent Normative Functions in Castration-Resistant Prostate Cancer. In: Reichle, A. (eds) Evolution-adjusted Tumor Pathophysiology:. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6866-6_5

Download citation

Publish with us

Policies and ethics