Skip to main content

Physical Aging of Polymer Blends

  • Reference work entry
  • First Online:
Polymer Blends Handbook

Abstract

The selection of polymers and polymer blends for use as specific materials requires the consideration of how these will withstand the environmental conditions to which these will be subjected. The long-term stability of a polymer will depend on its aging characteristics both physical and chemical.

Physical aging is the term used to describe the observed changes in properties of glassy materials as a function of storage time, at a temperature below the glass transition, T g . This phenomenon is important mainly when the materials have a substantial amorphous content. For these materials, a quench from above T g into the glassy state introduces a nonequilibrium structure which, on annealing at constant temperature, approaches an equilibrium state via small-scale relaxation processes in the glassy state. The aging process can be detected through the time evolution of thermodynamic properties such as the specific volume or enthalpy or mechanical methods such as creep, stress-relaxation, and dynamic mechanical measurements. Here, the fundamental principles of physical aging will be described, and models that quantitatively describe the aging process are briefly described.

Physical aging effects have practical implications and need to be considered when assessing the long-term stability of polymers and polymer–polymer mixtures. This chapter focuses on a discussion of the effect of blending on physical aging and gives a review of the different experimental methods that can be used to compare aging rates in blends to those of the individual components.

J. M. G. Cowie: Deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R. Acioli-Moura, X.S. Sun, Polym. Eng. Sci. 48, 829 (2008)

    CAS  Google Scholar 

  • K. Adachi, T. Kotaka, Polym. J. 14, 959 (1982)

    CAS  Google Scholar 

  • G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)

    CAS  Google Scholar 

  • C.A. Angell, J. Non Cryst. Solids 131, 13 (1991)

    Google Scholar 

  • V. Arrighi, J.M.G. Cowie, R. Ferguson, I.J. McEwen, E.-A. McGonigle, R.A. Pethrick, E. Princi, Polym. Int. 55, 749 (2006)

    CAS  Google Scholar 

  • R. Asaletha, P. Bindu, I. Aravind, A.P. Meera, S.V. Valsaraj, W.M. Yang, S.J. Thomas, Appl. Polym. Sci. 108, 904 (2008)

    CAS  Google Scholar 

  • N.V. Babkina, L.F. Kosyanchuk, T.T. Todosiichuk, N.V. Kozak, G.Y. Menzheres, G.M. Nesterenko, Polym. Sci. A 54, 125 (2012)

    CAS  Google Scholar 

  • G.P. Belloch, M. S. Sanchez, J. L. G. Ribelles, M. M. Pradas, J. M. M. Duenas, P. Pissis, Polym Eng Sci. 39, 688 (1999)

    Google Scholar 

  • K.M. Bernatz, L. Giri, S.L. Simon, D.J. Plazek, J. Chem. Phys. 111, 2235 (1999)

    CAS  Google Scholar 

  • H.C. Booij, J.H.M. Palmen, Polym. Eng. Sci. 18, 78 (1978)

    Google Scholar 

  • M. Bosma, G. ten Brinke, T.S. Ellis, Macromolecules 21, 1464 (1988)

    Google Scholar 

  • C.D. Breach, M.J. Folkes, J.M. Barton, Polymer 33, 3080 (1992)

    CAS  Google Scholar 

  • A. Brunacci, J.M.G. Cowie, R. Ferguson, I.J. McEwen, Polymer 38, 865 (1997a)

    CAS  Google Scholar 

  • A. Brunacci, J.M.G. Cowie, R. Ferguson, I.J. McEwen, Polymer 35, 3263 (1997b)

    Google Scholar 

  • A. Brunacci, J.M.G. Cowie, I.J. McEwen, J. Chem. Soc. Faraday Trans. 94, 1105 (1998)

    CAS  Google Scholar 

  • N.R. Cameron, J.M.G. Cowie, R. Ferguson, I. McEwan, Polymer 42, 6991 (2001)

    CAS  Google Scholar 

  • N. Cameron, J.M.G. Cowie, R. Ferguson, J.L.G. Ribelles, J.M. Estelles, Eur. Polym. J. 38, 597 (2002)

    CAS  Google Scholar 

  • J.A. Campbell, A.A. Goodwin, F.W. Mercer, V. Reddy, High Perform. Polymers 9, 263 (1997)

    CAS  Google Scholar 

  • C.K. Chai, N.G. McCrum, Polymer 21, 706 (1980)

    CAS  Google Scholar 

  • G.-W. Chang, A.M. Jamieson, Z. Yu, J.D. McGervey, J. Appl. Polym. Sci. 63, 483 (1997)

    CAS  Google Scholar 

  • T.W. Cheng, H. Keskkula, D.R. Paul, J. Appl. Polym. Sci. 45, 531 (1992)

    CAS  Google Scholar 

  • J.M.G. Cowie, R. Ferguson, Polym. Commun. 27, 258 (1986)

    CAS  Google Scholar 

  • J.M.G. Cowie, S. Elliott, R. Ferguson, R. Simha, Polym. Commun. 28, 298 (1987)

    CAS  Google Scholar 

  • J.M.G. Cowie, R. Ferguson, Macromolecules 22, 2312 (1989)

    CAS  Google Scholar 

  • J.M.G. Cowie, S. Elliot, Internal publication, Heriot-Watt University, Edinburgh (1990)

    Google Scholar 

  • J.M.G. Cowie, R. Ferguson, Paper presented at IUPAC, Montreal (1991)

    Google Scholar 

  • J.M.G. Cowie, R. Ferguson, Polymer 34, 2135 (1993)

    CAS  Google Scholar 

  • J.M.G. Cowie, I.J. McEwen, S. Matsuda, J. Chem. Soc. Faraday Trans. 94, 3481 (1998)

    CAS  Google Scholar 

  • J.M.G. Cowie, S. Harris, J.L. Gomez Ribelles, J.M. Meseguer, F. Romero, C. Torregrosa, Macromolecules 32, 4430 (1999)

    CAS  Google Scholar 

  • J.M.G. Cowie, I. McEwan, I.J. McEwen, R.A. Pethrick, Macromolecules 34, 7071 (2001)

    CAS  Google Scholar 

  • J.M.G. Cowie, V. Arrighi, E.-A. McGonigle, Macromol. Chem. Phys. 206, 767 (2005)

    CAS  Google Scholar 

  • M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63, 51 (1981)

    CAS  Google Scholar 

  • T.S. Ellis, Macromolecules 23, 1494 (1990)

    CAS  Google Scholar 

  • J.M. Estelles, J.L.G. Ribelles, M.M. Pradas, Polymer 34, 3837 (1993)

    Google Scholar 

  • J.H. Gibbs, J. Di Marzio, Chem. Phys. 28, 373 (1958)

    CAS  Google Scholar 

  • R. Greiner, F.R. Schwarzl, Rheol. Acta 23, 378 (1984)

    CAS  Google Scholar 

  • J.L. Gomez-Ribelles, M. Monleon-Pradas, Macromolecules 28, 5867 (1995)

    CAS  Google Scholar 

  • J.L. Gomez-Ribelles, M. Monleon, A. Vidaurre, F. Romero, J. Estelles, J.M. Mesegner, Macromolecules 28, 5878 (1995)

    CAS  Google Scholar 

  • A.A. Goodwin, J. Appl. Polym. Sci. 72, 543 (1999)

    CAS  Google Scholar 

  • R. Grooten, G. ten Brinke, Macromolecules 22, 1761 (1989)

    CAS  Google Scholar 

  • Y.L. Guo, R.D. Bradshaw, Mech. Time-Depend. Mater. 11, 61 (2007)

    CAS  Google Scholar 

  • M. Haghighi-Yazdi, P. Lee-Sullivan, Mech. Time-Depend. Mater. 17, 171 (2013)

    CAS  Google Scholar 

  • J.N. Hay, Prog. Colloid Polym. Sci. 87, 74 (1992)

    CAS  Google Scholar 

  • T. Ho, J. Mijovic, C. Lee, Polymer 32, 619 (1991)

    CAS  Google Scholar 

  • I.M. Hodge, A.R. Berens, Macromolecules 14, 1599 (1981)

    Google Scholar 

  • I.M. Hodge, A.R. Berens, Macromolecules 15, 762 (1982)

    CAS  Google Scholar 

  • I.M. Hodge, G.S. Huvard, Macromolecules 16, 371 (1983)

    CAS  Google Scholar 

  • I.M. Hodge, Macromolecules 20, 2897 (1987)

    CAS  Google Scholar 

  • B.K. Hong, W.H. Jo, J. Kim, Polymer 39, 3753 (1998)

    CAS  Google Scholar 

  • J.M. Hutchinson, Prog. Coll. Polym. Sci. 87, 69 (1992)

    CAS  Google Scholar 

  • J.M. Hutchinson, P. Kumar, Thermochim. Acta 391, 197 (2002)

    CAS  Google Scholar 

  • G.P. Johari, J. Chem. Phys. 77, 4619 (1982)

    CAS  Google Scholar 

  • S.R. Jong, T.L. Yu, J. Polym. Sci. Part B Polym. Phys. 35, 69 (1997)

    CAS  Google Scholar 

  • R. Jorda, G.L. Wilkes, Polym. Bull. 20, 479 (1988)

    CAS  Google Scholar 

  • R. Kohlrausch, Pogg. Ann. 12, 393 (1897)

    Google Scholar 

  • A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, A.R. Ramos, J. Polym. Sci. Polym. Phys. Ed. 17, 1079 (1979)

    Google Scholar 

  • M.J. Kubát, P. Ríha, R.W. Rychwalski, S. Uggla, Mech. Time-Depend. Mater. 3, 31 (1999)

    Google Scholar 

  • M.J. Kubát, P. Riha, R.W. Rychwalski, J. Kubat, Europhys. Lett. 50, 507 (2000)

    Google Scholar 

  • W.W.Y. Lau, Y.G. Jiang, P.P.K. Tan, Polym. Int. 31, 163 (1993)

    CAS  Google Scholar 

  • J.J. Laverty, Polym. Eng. Sci. 28(6), 360 (1988)

    CAS  Google Scholar 

  • Q. Li, S.L. Simon, Polymer 47, 4781 (2006)

    CAS  Google Scholar 

  • F.H.J. Maurer, J.H.M. Palmen, H.C. Booij, Rheol. Acta. 24, 243 (1985)

    CAS  Google Scholar 

  • N.G. McCrum, Plast. Rubb. Comp. Proc. Appl. 18, 181 (1992)

    CAS  Google Scholar 

  • E.-A. McGonigle, J.M.G. Cowie, V. Arrighi, R.A. Pethrick, J. Mater. Sci. 40, 1869 (2005)

    CAS  Google Scholar 

  • G.B. McKenna, Physical aging in glasses and composites, in Long-Term Durability of Polymeric Matrix Composites, ed. by K.V. Pochiraju, G.P. Tandon, G.A. Schoeppner (Springer, New York, 2012), pp. 237–31

    Google Scholar 

  • J. Mijovic, T. Ho, T.K. Kwei, Polym. Eng. Sci. 29, 1604 (1989)

    CAS  Google Scholar 

  • J. Mijovic, S.T. Devine, T. Ho, J. Appl. Polym. Sci. 39, 1133 (1990)

    CAS  Google Scholar 

  • J. Mijovic, T. Ho, C. Lee, Polymer 32, 619 (1991)

    Google Scholar 

  • J. Mijovic, T. Ho, Polymer 34, 3865 (1993)

    CAS  Google Scholar 

  • E. Morales, J.L. Acosta, Polym. J. 27, 226 (1995)

    CAS  Google Scholar 

  • C.T. Moynihan, P.B. Macedo, C.J. Montrose, P.K. Gupta, M.A. DeBolt, J.F. Dill, B.E. Dom, P.W. Drake, A.J. Easteal, P.B. Elterman, R.P. Moeller, H. Sasabe, J.A. Wilder, Ann. N.Y. Acad. Sci. 279, 15 (1976)

    CAS  Google Scholar 

  • K. Naito, G.E. Johnson, D.L. Allara, T.K. Kwei, Macromolecules 11, 1260 (1978)

    CAS  Google Scholar 

  • K.L. Ngai, Comments Solid State Phys. 9, 127 (1979)

    CAS  Google Scholar 

  • O.S. Narayanaswamy, J. Am. Ceram. Soc. 54, 491 (1971)

    CAS  Google Scholar 

  • E.F. Oleinik, Polym. J. 19, 105 (1987)

    CAS  Google Scholar 

  • A.A.C.N. Oudhuis, G. ten Brinke, Macromolecules 25, 698 (1992)

    CAS  Google Scholar 

  • A.K. Oultache, Y. Zhao, B. Jasse, L. Monnerie, Polymer 35, 681 (1994)

    CAS  Google Scholar 

  • D.R. Paul, J.W. Barlow, Polymer 25, 287 (1984)

    Google Scholar 

  • M. Penco, L. Sartore, S. Della Sciucca, Polym. Eng. Sci. 47, 218 (2007)

    CAS  Google Scholar 

  • S.E.B. Petrie, A.S. Marshall, J. Appl. Phys. 46, 4223 (1975)

    Google Scholar 

  • J.L.G. Ribelles, J.M.M. Duenas, C.T. Cabanilles, M.M. Pradas, J. Phys. Cond. Matter 15, S1149 (2003)

    Google Scholar 

  • P. Riha, J. Hadac, P. Slobodian, P. Saha, R.W. Rychwalski, J. Kubat, Polymer 48, 7356 (2007)

    CAS  Google Scholar 

  • R.E. Robertson, J. Polym. Sci. Polym. Phys. Ed. 17, 597 (1979)

    CAS  Google Scholar 

  • R.E. Robertson, R. Simha, J.G. Curro, Macromolecules 17, 911 (1984)

    CAS  Google Scholar 

  • C.G. Robertson, G.L. Wilkes, Polymer 41, 9191 (2000)

    CAS  Google Scholar 

  • C.G. Robertson, G.L. Wilkes, Polymer 42, 1581 (2001)

    CAS  Google Scholar 

  • C.M. Roland, K.L. Ngai, Macromolecules 25, 363 (1992)

    CAS  Google Scholar 

  • E.M.S. Sanchez, Polym. Test. 26, 378 (2007)

    CAS  Google Scholar 

  • G. Sartor, E. Mayer, G.P.J. Johari, Polym. Sci. Polym. Phys. 32, 683 (1994)

    CAS  Google Scholar 

  • P. Shi, R. Schach, E. Munch, H. Montes, F. Lequeux, Macromolecules 46, 3611 (2013)

    CAS  Google Scholar 

  • S. Shimada, O. Isogai, Polym. J. 28, 655 (1996)

    CAS  Google Scholar 

  • R. Simha, T. Somcynsky, Macromolecules 2, 342 (1969)

    CAS  Google Scholar 

  • P. Slobodian, A. Lengalova, P. Saha, Polym. J. 36, 176 (2004)

    CAS  Google Scholar 

  • P. Slobodian, P. Riha, R.W. Rychwalski, I. Emri, P. Saha, J. Kubat, Eur. Polym. J. 42, 2824 (2006a)

    CAS  Google Scholar 

  • P. Slobodian, J. Vernel, V. Pelisek, P. Saha, P. Riha, R.W. Rychwalski, J. Kubat, I. Emri, Mech. Time-Depend. Mater. 10, 1 (2006b)

    CAS  Google Scholar 

  • S. Spoljaric, A. Genovese, T.K. Goh, A. Blencowe, G.G. Qiac, R.A. Shanks, Macromol. Chem. Phys. 212, 1677 (2011)

    CAS  Google Scholar 

  • L.C.E. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Amsterdam, 1978)

    Google Scholar 

  • S. Suzuki, S. Nishitsuji, T. Inoue, Polym. Eng. Sci. 52, 1958 (2012)

    CAS  Google Scholar 

  • Z.Y. Tan, S.L. Sun, X.F. Xu, C. Zhou, Y.H. Ao, H.X. Zhang, J. Polym. Sci. Polym. Phys. 43, 2715 (2005)

    CAS  Google Scholar 

  • J.K.Y. Tang, P. Lee-Sullivan, J. Appl. Polym. Sci. 110, 97 (2008)

    CAS  Google Scholar 

  • G. ten Brinke, R. Grooten, Colloid Polym. Sci. 267, 992 (1989)

    Google Scholar 

  • G. ten Brinke, G., Karasz, F. E., MacKnight, W. J. Macromolecules. 16, 1827 (1983)

    Google Scholar 

  • G. ten Brinke, L. Oudhuis, L., T. S. Ellis, Thermochmica Acta. 238, 75 (1994)

    Google Scholar 

  • A.Q. Tool, J. Am. Ceram. Soc. 29, 240 (1946)

    CAS  Google Scholar 

  • J. Vernel, R.W. Rychwalski, V. Pelisek, P. Saha, M.K. Schmidt, F.H.J. Maurer, Thermochim. Acta 342, 115 (1999)

    CAS  Google Scholar 

  • G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)

    CAS  Google Scholar 

  • M. Yun, N. Jung, C. Yim, S. Jeon, Polymer 52, 4136 (2011)

    CAS  Google Scholar 

  • S.H. Zhang, X. Jin, P.C. Painter, J. Runt, Polymer 45, 3933 (2004)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Arrighi .

Editor information

Editors and Affiliations

Abbreviations

ABS

Acrylonitrile–butadiene–styrene

AIM

Acrylic Impact Modifier

AN

Acrylonitrile

BPAPC

Bisphenol-A polycarbonate

CCS-PS

Core cross-linked star PS

CPSF

Carboxylated polysulfone

C-F

Cowie–Ferguson model

Dil

Dilatometry

DSC

Differential scanning calorimetry

FTIR

Fourier-transform infrared spectroscopy

GD

Gibbs and Di Marzio theory

G-M

Gomez-Ribelles and Monleon-Padras model

HS

4-Hydroxystyrene

IPN

Interpenetrating network

KWW

Kohlrausch, Williams, and Watts function

Mech

Mechanical

NR

Natural rubber

PALS

Positronium annihilation lifetime spectroscopy

PB

Polybutadiene

PEEK

Polyether ether ketone

PEG

Polyethylene glycol

PEI

Polyether imide

PEMA

Poly(ethyl methacrylate)

PEO

Polyethylene oxide

PES

Poly(ether sulfone)

PHS

Poly(hydroxy styrene)

PiPMA

Poly(isopropyl methacrylate)

PLA

Poly(lactic acid)

PMA

Polymethacrylate

PMMA

Poly(methyl methacrylate)

PPO

Poly(p-phenylene oxide) or poly(2,6-dimethyl-1,4-phenylene ether) (PPE)

PPS

Polyphenylene sulfide

PS

Polystyrene (atactic)

PSF

Polysulfone

P-M

Petrie–Marshall model

PU

Polyurethane

PVAc

Polyvinyl acetate

PVC

Polyvinyl chloride

PVDF

Polyvinylidenefluoride

PVME

Poly(vinyl methyl ether)

P2VP

Poly(2-vinylpyridine)

PVP

Poly(N-vinyl pyrrolidone)

SAN

Poly(styrene-stat-acrylonitrile)

S

Styrene

SBR

Styrene butadiene rubber

SEBS

Hydrogenated styrene–butadiene–styrene block copolymer

SMA

Styrene-co-maleic anhydride

S-S

Theory of Simha–Somcynsky

TNM

Tool–Narayanaswamy–Moynihan model

VA

Vinyl alcohol

VAc

Vinyl acetate

A

Fitting constant

b V

Volume relaxation rate

C p

Heat capacity

C T

Adjustable temperature coefficient

C t

Adjustable time coefficient

ΔC p

Heat capacity change

D o

Creep compliance at zero time

D(t)

Creep compliance at time t

E o

Modulus at zero time

E(t)

Modulus at time t

G o

Stress-relaxation moduli at zero time

G(t)

Stress-relaxation moduli at time t

H

Enthalpy

H(∞)

Equilibrium enthalpy value

ΔH

Enthalpy change

Δh *

Effective activation energy

e+

Positively charged positron

I 3

Relative intensity of the oPs component

oPs

Ortho-positronium

Ps

Positronium

q

Cooling rate

r

Cavity radius

R

Gas constant

S c

Configurational entropy

t

Time

T

Temperature

t a

Annealing time

T a

Annealing temperature

t c

Characteristic time

T f

Fictive temperature

T g

Glass transition temperature

V

Specific volume

V ∞

Specific volume at equilibrium, at temperature T

x

Structural parameter

β

Parameter of KWW function

β T

Isothermal compressibility

δ

Departure from equilibrium

ε

Strain

Ï•(t)

Relaxation function

σ

Stress

μ

Shift factor

Ï„

Relaxation time

Ï„ 3

oPs lifetime

Ï„ o

Equilibrium relaxation time

ω c

Critical frequency

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Cowie, J.M.G., Arrighi, V. (2014). Physical Aging of Polymer Blends. In: Utracki, L., Wilkie, C. (eds) Polymer Blends Handbook. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6064-6_15

Download citation

Publish with us

Policies and ethics