Skip to main content

Robonaut, Valkyrie, and NASA Robots

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

NASA is best known for its historical human missions to the moon in the 1960s and 1970s. Future human missions to other planets, such as Mars, however will involve human-robot teams. These missions will require robots capable of dealing with interfaces designed primarily for human interaction. As such research into humanoid robotic systems has been ongoing at NASA’s Johnson Space Center for the last two decades. This chapter examines the Center’s two most recent humanoid robots: Robonaut 2 and Valkyrie. Specifically discussion will focus on the technologies and advancements that enabled these systems as well as the evolution of that technology from one system to the next. The chapter will conclude with a few remarks on where current development is focusing at JSC and areas where the community can contribute and collaborate on problems aligned with NASA’s long-term space exploration goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aircraft incident report: auxiliary power unit battery fire, Japan Airlines Boeing 787–8, JA829J. Incident report, National Transportation Safety Board, 01 2013. [Online. Accessed 01 Feb 2016]

    Google Scholar 

  2. M.E. Abdallah, R. Platt, C.W. Wampler, Decoupled torque control of tendon-driven fingers with tension management. Int. J. Robot. Res. 32(2), 247–258 (2013)

    Article  Google Scholar 

  3. T.D. Ahlstrom, M.A. Diftler, R.B. Berka, J.M. Badger, S. Yayathi, A.W. Curtis, C.A. Joyce, Robonaut 2 on the international space station: status update and preparations for IVA mobility, in Proceedings of the AIAA SPACE 2013 Conference and Exposition, 2013

    Google Scholar 

  4. A. Albu-Schäffer, C. Ott, G. Hirzinger, A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007)

    Google Scholar 

  5. G. Anderson, Nasa awards two robots to university groups for R&D upgrades, Nov 2015. (Online. Posted 17 Nov 2015)

    Google Scholar 

  6. M.A. Diftler, T.D. Ahlstrom, R.O. Ambrose, N.A. Radford, C.A. Joyce, N. De La Pena, A.H. Parsons, A.L. Noblitt, Robonaut 2 initial activities on-board the ISS, in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12

    Google Scholar 

  7. M.A. Diftler, J.S. Mehling, M.E. Abdallah, N.A. Radford, L.B. Bridgwater, A.M. Sanders, R.S. Askew, D.M. Linn, J.D. Yamokoski, F.A. Permenter, et al, Robonaut 2-the first humanoid robot in space, in Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp. 2178–2183

    Google Scholar 

  8. C.-L. Fok, G. Johnson, L. Sentis, A. Mok, J.D. Yamokoski, Controlit! – a software framework for whole-body operational space control. Int. J. Humanoid Robot. 13(1), 1550040 (2015)

    Article  Google Scholar 

  9. R.V. Ham, T.G. Sugar, B. Vanderborght, K.W. Hollander, D. Lefeber, Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)

    Article  Google Scholar 

  10. S. Hart, P. Dinh, K. Hambuchen, Affordance templates for shared robot control, in Artificial Intelligence and Human-Robot Interaction, AAAI Fall Symposium Series, Arlington, 2014

    Google Scholar 

  11. S. Hart, R. Grupen, Intrinsically motivated affordance discovery and modeling, in Intrinsically Motivated Learning in Natural and Artificial Systems (Springer, 2013), pp. 279–300

    Google Scholar 

  12. S. Hart, J. Yamokoski, M. Diftler, Robonaut 2: a new platform for human-centered robot learning, in Robotics Science and Systems, 2011

    Google Scholar 

  13. S. Hart, P. Dinh, J.D. Yamokoski, B. Wightman, N. Radford, Robot task commander: a framework and ide for robot application development. In Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) (IEEE, 2014), pp. 1547–1554

    Google Scholar 

  14. M. Hoffman, Robotic refueling project of NASA conducted first test at ISS, Feb 2013. (Online. Posted 09 Feb 2013)

    Google Scholar 

  15. M. Johnson, J.M. Bradshaw, P.J. Feltovich, C.M. Jonker, B. van Riemsdijk, M. Sierhuis, The fundamental principle of coactive design: interdependence must shape autonomy, in Coordination, Organizations, Institutions, and Norms in Agent Systems VI (Springer, 2011), pp. 172–191

    Google Scholar 

  16. K. Kong, J. Bae, M. Tomizuka, A compact rotary series elastic actuator for human assistive systems. IEEE/ASME Trans. Mechatron. 17(2), 288–297 (2012)

    Article  Google Scholar 

  17. L. Li, B. Cox, M. Diftler, S. Shelton, B. Rogers, Development of a telepresence controlled ambidextrous robot for space applications, in Proceedings of 1996 IEEE International Conference on Robotics and Automation, vol. 1 (IEEE, 1996), pp. 58–63

    Google Scholar 

  18. N. Paine, J.S. Mehling, J. Holley, N.A. Radford, G. Johnson, C.-L. Fok, L. Sentis, Actuator control for the NASA-JSC valkyrie humanoid robot: a decoupled dynamics approach for torque control of series elastic robots. J. Field Robot. 32(3), 378–396 (2015)

    Article  Google Scholar 

  19. N. Paine, S. Oh, L. Sentis, Design and control considerations for high-performance series elastic actuators. IEEE/ASME Trans. Mechatron. 19(3), 1080–1091 (2014)

    Article  Google Scholar 

  20. R. Platt Jr., M. Abdallah, C. Wampler, Multiple-priority impedance control, in Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp. 6033–6038

    Google Scholar 

  21. R. Platt Jr., C. Ihrke, L. Bridgewater, D. Linn, R. Diftler, M. Abdallah, S. Askew, F. Permenter, A miniature load cell suitable for mounting on the phalanges of human-sized robot fingers, in Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp. 5357–5362

    Google Scholar 

  22. R. Platt Jr., F. Permenter, J. Pfeiffer, Using Bayesian filtering to localize flexible materials during manipulation. IEEE Trans. Robot. 27(3), 586–598 (2011)

    Article  Google Scholar 

  23. J. Pratt, B. Krupp, C. Morse, Series elastic actuators for high fidelity force control. Ind. Robot. Int. J. 29(3), 234–241 (2002)

    Article  Google Scholar 

  24. N.A. Radford, C. McQuin, J. Yamokoski et al., Valkyrie: NASA’s first bipedal humanoid robot. J. Field Robot. 32(3), 397–419 (2015)

    Google Scholar 

  25. M.E. Stieber, C.P. Trudel, D.G. Hunter, Robotic systems for the international space station, in Proceedings of 1997 IEEE International Conference on Robotics and Automation, vol. 4 (IEEE, 1997), pp. 3068–3073

    Google Scholar 

  26. M.E. Taylor, P. Stone, Transfer learning for reinforcement learning domains: a survey. J. Mach. Learn. Res. 10, 1633–1685 (2009)

    Google Scholar 

  27. M.M. Williamson, Series elastic actuators. PhD thesis, Massachusetts Institute of Technology, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Yamokoski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamokoski, J., Radford, N. (2019). Robonaut, Valkyrie, and NASA Robots. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_17

Download citation

Publish with us

Policies and ethics