Skip to main content

Midkine in Inflammation and Inflammatory Diseases

  • Chapter
  • First Online:
  • 453 Accesses

Abstract

Midkine (MK) and pleotrophin (PTN) are members of a family of heparin-binding growth factors that promotes the proliferation, differentiation, survival, adhesion, migration, and other activities of responding cells, they have become promising molecular targets for the treatment of diseases including malignancy and immune mediated inflammatory diseases. MK is involved in the regulation of organ development and the etiology of many diseases. This chapter focuses on both cell protective and cytokine like effects of MK in different inflammatory conditions at the cellular/systemic levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132:359–371

    Article  PubMed  CAS  Google Scholar 

  2. Yazihan N, Kocak MK, Akcil E et al (2011) Role of midkine in cadmium-induced liver, heart and kidney damage. Hum Exp Toxicol 30:391–397

    Article  PubMed  CAS  Google Scholar 

  3. Yazihan N, Ataoglu H, Akcil E et al (2008) Midkine secretion protects Hep3B cells from cadmium induced cellular damage. World J Gastroenterol 14:76–80

    Article  PubMed  CAS  Google Scholar 

  4. Kato M, Shinozawa T, Kato S et al (2000) Divergent expression of midkine in the human fetal liver and kidney: immunohistochemical analysis of developmental changes in hilar primitive bile ducts and hepatocytes. Liver 20:475–481

    Article  PubMed  CAS  Google Scholar 

  5. Obama H, Tsutsui J, Ozawa M et al (1995) Midkine (MK) expression in extraembryonic tissues, amniotic fluid, and cerebrospinal fluid during mouse embryogenesis. J Biochem 118:88–93

    PubMed  CAS  Google Scholar 

  6. Tsutsui J, Kadomatsu K, Matsubara S et al (1993) A new family of heparin-binding growth/differentiation factors: increased midkine expression in Wilms’ tumor and other human carcinomas. Cancer Res 15(53):1281–1285

    Google Scholar 

  7. Tsutsui J, Uehara K, Kadomatsu K et al (1991) A new family of heparin-binding factors: strong conservation of midkine (MK) sequences between the human and the mouse. Biochem Biophys Res Commun 176:792–797

    Article  PubMed  CAS  Google Scholar 

  8. Kato H, Watanabe K, Murari M et al (2000) Midkine expression in Reed-Sternberg cells of Hodgkin’s disease. Leuk Lymphoma 37:415–424

    PubMed  CAS  Google Scholar 

  9. Tsutsui J, Kadomatsu K, Matsubara S et al (1993) A new family of heparin-binding growth/differentiation factors: increased midkine expression in Wilms’ tumor and other human carcinomas. Cancer Res 53:1281–1285

    PubMed  CAS  Google Scholar 

  10. Gao SJ, Li GL (2009) Expression of midkine and vascular endothelial growth factor in bone marrow of patients with multiple myeloma and its significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi 17:1464–1467

    PubMed  CAS  Google Scholar 

  11. Hiramatsu K, Yoshida H, Kimura T et al (1998) Midkine induces histamine release from mast cells and the immediate cutaneous response. Biochem Mol Biol Int 44:453–462

    PubMed  CAS  Google Scholar 

  12. Hu R, Yan Y, Li Q et al (2010) Increased drug efflux along with midkine gene high expression in childhood B-lineage acute lymphoblastic leukemia cells. Int J Hematol 92:105–110

    Article  PubMed  CAS  Google Scholar 

  13. Hidaka H, Yagasaki H, Takahashi Y et al (2007) Increased midkine gene expression in childhood B-precursor acute lymphoblastic leukemia. Leuk Res 31:1045–1051

    Article  PubMed  CAS  Google Scholar 

  14. Wang Y, Lin D, Wang DH et al (2008) The expression of midkine in acute leukemia and its significance. Zhonghua Xue Ye Xue Za Zhi 29:544–548

    PubMed  CAS  Google Scholar 

  15. Krzystek-Korpacka M, Matusiewicz M, Banas T (2006) Structure and function of midkine, a novel heparin-binding growth factor. Postepy Hig Med Dosw 60:591–601

    Google Scholar 

  16. Muramatsu T (2010) Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc Jpn Acad Ser B Phys Biol Sci 86:410–425

    Article  PubMed  CAS  Google Scholar 

  17. Yazihan N, Karakurt O, Ataoglu H (2008) Erythropoietin reduces lipopolysaccharide-induced cell damage and midkine secretion in U937 human histiocytic lymphoma cells. Adv Ther 25:502–514

    Article  PubMed  CAS  Google Scholar 

  18. Wang J, Takeuchi H, Sonobe Y et al (2008) Inhibition of midkine alleviates experimental autoimmune encephalomyelitis through the expansion of regulatory T cell population. Proc Natl Acad Sci USA 105:3915–3920

    Article  PubMed  CAS  Google Scholar 

  19. Muramatsu H, Song XJ, Torii S et al (1997) Midkine, a retinoic acid-inducible heparin-binding cytokine in inflammatory responses: chemotactic activity to neutrophils and association with inflammatory synovitis. J Biochem 122:453–458

    Article  PubMed  Google Scholar 

  20. Horiba M, Kadomatsu K, Nakamura E et al (2000) Neointima formation in a restenosis model is suppressed in midkine-deficient mice. J Clin Invest 105:489–495

    Article  PubMed  CAS  Google Scholar 

  21. Takada T, Toriyama K, Sato W et al (2001) Midkine is involved in neutrophil infiltration into the tubulointerstitium in ischemic renal injury. J Immunol 167:3463–3469

    Google Scholar 

  22. Kawai H, Sato W, Yuzawa Y et al (2004) Lack of the growth factor midkine enhances survival against cisplatin-induced renal damage. Am J Pathol 165:1603–1612

    Article  PubMed  CAS  Google Scholar 

  23. Svensson SL, Pasupuleti M, Walse B et al (2010) Midkine and pleiotrophin have bactericidal properties: preserved antibacterial activity in a family of heparin-binding growth factors during evolution. J Biol Chem 285:16105–16115

    Article  PubMed  CAS  Google Scholar 

  24. Krzystek-Korpacka M, Mierzchala M, Neubauer K et al (2011) Midkine, a multifunctional cytokine, in patients with severe sepsis and septic shock: a pilot study. Shock 35:471–477

    Article  PubMed  CAS  Google Scholar 

  25. Reynolds PR, Mucenski ML, Le Cras TD et al (2004) Midkine is regulated by hypoxia and causes pulmonary vascular remodeling. J Biol Chem 279:37124–37132

    Article  PubMed  CAS  Google Scholar 

  26. Krzystek-Korpacka M, Neubauer K, Matusiewicz M (2009) Clinical relevance of circulating midkine in ulcerative colitis. Clin Chem Lab Med 47:1085–1090

    Article  PubMed  CAS  Google Scholar 

  27. Krzystek-Korpacka M, Neubauer K, Matusiewicz M (2010) Circulating midkine in Crohn’s disease: clinical implications. Inflamm Bowel Dis 16:208–215

    Article  PubMed  Google Scholar 

  28. Takada T, Toriyama K, Muramatsu H et al (1997) Midkine, a retinoic acid-inducible heparin-binding cytokine in inflammatory responses: chemotactic activity to neutrophils and association with inflammatory synovitis. J Biochem 122:453–458

    Article  PubMed  CAS  Google Scholar 

  29. Maruyama K, Muramatsu H, Ishiguro N et al (2004) Midkine, a heparin-binding growth factor, is fundamentally involved in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 50:1420–1429

    Article  PubMed  CAS  Google Scholar 

  30. Henderson WR Jr (1994) The role of leukotrienes in inflammation. Ann Intern Med 121:684–697

    PubMed  CAS  Google Scholar 

  31. Scholl B, Bersinger NA, Kuhn A et al (2009) Correlation between symptoms of pain and peritoneal fluid inflammatory cytokine concentrations in endometriosis. Gynecol Endocrinol 25:701–706

    Article  PubMed  CAS  Google Scholar 

  32. Krzystek-Korpacka M, Matusiewicz M, Diakowska D et al (2008) Respiratory insufficiency related to COPD accelerates systemic inflammation, under-nutrition, and angiogenesis in esophageal malignancies. Exp Oncol 30:75–80

    PubMed  CAS  Google Scholar 

  33. Yuki T, Ishihara S, Rumi MA et al (2006) Increased expression of midkine in the rat colon during healing of experimental colitis. Am J Physiol Gastrointest Liver Physiol 291:G735–G743

    Article  PubMed  CAS  Google Scholar 

  34. Inoh K, Muramatsu H, Ochiai K et al (2004) Midkine, a heparin-binding cytokine, plays key roles in intraperitoneal adhesions. Biochem Biophys Res Commun 317:108–113

    Article  PubMed  CAS  Google Scholar 

  35. Maeda N, Noda M (1998) Involvement of receptor-like protein tyrosine phosphatase zeta/RPTPbeta and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration. J Cell Biol 142:203–216

    Article  PubMed  CAS  Google Scholar 

  36. Maekawa T, Waki S, Okada A et al (1999) Midkine gene expression in the healing process of gastric ulcer. J Lab Clin Med 133:349–352

    Article  PubMed  CAS  Google Scholar 

  37. Sato W, Yuzawa Y, Kadomatsu K et al (2002) Midkine expression in the course of nephrogenesis and its role in ischaemic reperfusion injury. Nephrol Dial Transplant 17(Suppl 9):52–54

    Article  PubMed  CAS  Google Scholar 

  38. Kosugi T, Yuzawa Y, Sato W et al (2006) Growth factor midkine is involved in the pathogenesis of diabetic nephropathy. Am J Pathol 168:9–19

    Article  PubMed  CAS  Google Scholar 

  39. Kosugi T, Yuzawa Y, Sato W et al (2007) Midkine is involved in tubulointerstitial inflammation associated with diabetic nephropathy. Lab Invest 87:903–913

    Article  PubMed  CAS  Google Scholar 

  40. Kato K, Kosugi T, Sato W et al (2011) Growth factor Midkine is involved in the pathogenesis of renal injury induced by protein overload containing endotoxin. Clin Exp Nephrol 15:346–354

    Article  PubMed  CAS  Google Scholar 

  41. You Z, Dong Y, Kong X et al (2008) Midkine is a NF-kappaB-inducible gene that supports prostate cancer cell survival. BMC Med Genomics 14:1–6

    Google Scholar 

  42. Ohuchida T, Okamoto K, Akahane K et al (2004) Midkine protects hepatocellular carcinoma cells against TRAIL-mediated apoptosis through down-regulation of caspase-3 activity. Cancer 100:2430–2436

    Article  PubMed  CAS  Google Scholar 

  43. Kayama F, Yoshida T, Elwell MR et al (1995) Role of tumor necrosis factor-alpha in cadmium-induced hepatotoxicity. Toxicol Appl Pharmacol 131:224–234

    Article  PubMed  CAS  Google Scholar 

  44. Yasuhara O, Muramatsu H, Kim Su et al (1993) Midkine, a novel neurotrophic factor, is present in senile plaques of Alzheimer disease. Biochem Biophys Res Commun 192:246–251

    Article  PubMed  CAS  Google Scholar 

  45. Yu GS, Hu J, Nakagawa H (1998) Inhibition of beta-amyloid cytotoxicity by midkine. Neurosci Lett 254:125–128

    Article  PubMed  CAS  Google Scholar 

  46. Unoki K, Ohba N, Arimura H et al (1994) Rescue of photoreceptors from the damaging effects of constant light by midkine, a retinoic acid-responsive gene product. Invest Ophthalmol Vis Sci 35:4063–4068

    PubMed  CAS  Google Scholar 

  47. Fan QW, Muramatsu T, Kadomatsu K (2000) Distinct expression of midkine and pleiotrophin in the spinal cord and placental tissues during early mouse development. Dev Growth Differ 42:113–119

    Article  PubMed  CAS  Google Scholar 

  48. Maruta H, Bartlett PF, Nurcombe V et al (1993) Midkine (MK), a retinoic acid (RA)-inducible gene product, produced in E. coli acts on neuronal and HL60 leukemia cells. Growth Factors 8:119–134

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuray Yazıhan .

Editor information

Editors and Affiliations

Additional information

Funding: This chapter contains data from studies supported by TUBITAK-BMBF (SBAG104S329, SBAG108S262).

Conflict of interest: We certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yazıhan, N., Kocak, M.K., Akcıl, E. (2012). Midkine in Inflammation and Inflammatory Diseases. In: Ergüven, M., Muramatsu, T., Bilir, A. (eds) Midkine: From Embryogenesis to Pathogenesis and Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4234-5_7

Download citation

Publish with us

Policies and ethics