Skip to main content

Digital Straightness, Circularity, and Their Applications to Image Analysis

  • Chapter
Digital Geometry Algorithms

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 2))

Abstract

This chapter contains some theoretical properties of digital straightness and digital circularity, which are helpful in designing algorithms related to image analysis. These properties are obtained mainly from word-theoretic and number-theoretic analysis. Existing techniques on straight line recognition, circular arc recognition, vectorization, etc. have been discussed along with their historical connections. Some salient points that discriminate digital geometry from real geometry have also been mentioned. Relevant experimental results have been given to demonstrate the elegance of digital-geometric techniques in performing desired tasks in the digital plane. Some open problems have been given at the end to point out the challenges and prospects of digital straightness and circularity in image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [79], Q is considered to be a digital disk if there exists a Euclidean/real circle such that Q comprises of all the digital points lying on or inside that real circle.

  2. 2.

    The notion of inexactness in our work corresponds to a range of radius (and positions), which has some conceptual resemblance with the existence of generalized circumcenter proposed recently in [121].

  3. 3.

    Here we use L((x,y),(x′,y′)) to denote the digital straight line segment joining the points (x,y) and (x′,y′).

References

  1. Aken, J.R.V., Novak, M.: Curve-drawing algorithms for raster display. ACM Trans. Graph. 4(2), 147–169 (1985)

    Article  Google Scholar 

  2. Anderson, I.M., Bezdek, J.C.: Curvature and tangential deflection of discrete arcs: a theory based on the commutator of scatter matrix pairs and its application to vertex detection in planar shape data. IEEE Trans. Pattern Anal. Mach. Intell. 6, 27–40 (1984)

    Article  MATH  Google Scholar 

  3. Andres, E.: Discrete circles, rings and spheres. Comput. Graph. 18(5), 695–706 (1994)

    Article  Google Scholar 

  4. Andres, E., Jacob, M.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comput. Graph. 3(1), 75–86 (1997)

    Article  Google Scholar 

  5. Asano, T., Brass, P., Sasahara, S.: Disc covering problem with application to digital halftoning. Theory Comput. Syst. 46(2), 157–173 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Asano, T., Brimkov, V.E., Barneva, R.P.: Some theoretical challenges in digital geometry: a perspective. Discrete Appl. Math. 157(16), 3362–3371 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Asano, T., Katoh, N.: Number theory helps line detection in digital images. In: ISAAC, pp. 313–322 (1993)

    Google Scholar 

  8. Asano, T., Klette, R., Ronse, C. (eds.): Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Attneave, F.: Some informational aspects of visual perception. Psychol. Rev. 61(3), 183–193 (1954)

    Article  Google Scholar 

  10. Balog, A., Bárány, I.: On the convex hull of the integer points in a disc. In: Proc. 7th Annual Symposium on Computational Geometry, SCG 1991, pp. 162–165 (1991)

    Chapter  Google Scholar 

  11. Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Jorge, R.M.N., Tavares, J.M.R.S. (eds.): Computational Modeling of Objects Represented in Images, 2nd Int. Symposium CompIMAGE 2010. LNCS, vol. 6026. Springer, Berlin (2010)

    Google Scholar 

  12. Bera, S., Bhowmick, P., Bhattacharya, B.B.: Detection of circular arcs in a digital image using chord and sagitta properties. In: Extended Version of Proc. Eighth Int. Workshop on Graphics Recognition, GREC 2009. LNCS, vol. 6020, pp. 69–80 (2010)

    Google Scholar 

  13. Bezdek, J.C., Anderson, I.M.: An application of the c-varieties clustering algorithms to polygonal curve fitting. IEEE Trans. Syst. Man Cybern. 15, 637–641 (1985)

    Article  Google Scholar 

  14. Bhowmick, P., Bhattacharya, B.B.: Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1590–1602 (2007)

    Article  Google Scholar 

  15. Bhowmick, P., Bhattacharya, B.B.: Number-theoretic interpretation and construction of a digital circle. Discrete Appl. Math. 156(12), 2381–2399 (2008). doi:10.1016/j.dam.2007.10.022

    Article  MathSciNet  MATH  Google Scholar 

  16. Bhowmick, P., Biswas, A., Bhattacharya, B.B.: Isothetic polygons of a 2D object on generalized grid. In: Proc. 1st Int. Conf. Pattern Recognition and Machine Intelligence (PReMI). LNCS, vol. 3776, pp. 407–412. Springer, Berlin (2005)

    Chapter  Google Scholar 

  17. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: TIPS: On finding a Tight Isothetic Polygonal Shape covering a 2D object. In: Proc. 14th Scandinavian Conf. Image Analysis (SCIA). LNCS, vol. 3540, pp. 930–939. Springer, Berlin (2005)

    Google Scholar 

  18. Blinn, J.F.: How many ways can you draw a circle? IEEE Comput. Graph. Appl. 7(8), 39–44 (1987)

    Article  Google Scholar 

  19. Boyer, C.B.: A History of Mathematics, 2nd edn. Wiley, New York (1991)

    MATH  Google Scholar 

  20. Bresenham, J.E.: An incremental algorithm for digital plotting. In: Proc. ACM Natl. Conf. (1963)

    Google Scholar 

  21. Bresenham, J.E.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20(2), 100–106 (1977)

    Article  MATH  Google Scholar 

  22. Bresenham, J.E.: Run length slice algorithm for incremental lines. In: Earnshaw, R.A. (ed.) Fundamental Algorithms for Computer Graphics. NATO ASI Series, vol. F17, pp. 59–104. Springer, New York (1985)

    Chapter  Google Scholar 

  23. Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discrete Appl. Math. 155(4), 468–495 (2007). http://dx.doi.org/10.1016/j.dam.2006.08.004

    Article  MathSciNet  MATH  Google Scholar 

  24. Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theor. Comput. Sci. 283(1), 151–170 (2002). http://dx.doi.org/10.1016/S0304-3975(01)00061-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput. Sci. 319(1–3), 203–227 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput. Sci. 319(1–3), 203–227 (2004). http://dx.doi.org/10.1016/j.tcs.2004.02.015

    Article  MathSciNet  MATH  Google Scholar 

  27. Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points in a hyperball. Theor. Comput. Sci. 406(1–2), 24–30 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Brimkov, V.E., Barneva, R.P.: Advances in combinatorial image analysis. Pattern Recognit. 42(8), 1623–1625 (2009)

    Article  Google Scholar 

  29. Brimkov, V.E., Barneva, R.P.: Combinatorial approach to image analysis. Discrete Appl. Math. 157(16), 3359–3361 (2009)

    Article  MathSciNet  Google Scholar 

  30. Brimkov, V.E., Moroni, D., Barneva, R.P.: Combinatorial relations for digital pictures. In: DGCI, pp. 189–198 (2006)

    Google Scholar 

  31. Brons, R.: Linguistic methods for description of a straight line on a grid. Comput. Graph. Image Process. 2, 48–62 (1974)

    Article  MathSciNet  Google Scholar 

  32. Chattopadhyay, S., Das, P.P., Ghosh-Dastidar, D.: Reconstruction of a digital circle. Pattern Recognit. 27(12), 1663–1676 (1994)

    Article  Google Scholar 

  33. Chaudhuri, B.B., Rosenfeld, A.: On the computation of the digital convex hull and circular hull of a digital region. Pattern Recognit. 31(12), 2007–2016 (1998)

    Article  Google Scholar 

  34. Chen, T.C., Chung, K.L.: An efficient randomized algorithm for detecting circles. Comput. Vis. Image Underst. 83(2), 172–191 (2001)

    Article  MATH  Google Scholar 

  35. Chen, T.C., Chung, K.L.: A new randomized algorithm for detecting lines. Real-Time Imaging 7, 473–481 (2001)

    Article  MATH  Google Scholar 

  36. Chiang, Y., Knoblock, C.: An approach to automatic road vectorization of raster maps. In: Proc. GREC 2009 (2009)

    Google Scholar 

  37. Chiu, S.H., Liaw, J.J.: An effective voting method for circle detection. Pattern Recognit. Lett. 26(2), 121–133 (2005)

    Article  Google Scholar 

  38. Chung, W.L.: On circle generation algorithms. Comput. Graph. Image Process. 6, 196–198 (1977)

    Article  Google Scholar 

  39. Climer, S., Bhatia, S.K.: Local lines: a linear time line detector. Pattern Recognit. Lett. 24, 2291–2300 (2003)

    Article  MATH  Google Scholar 

  40. Coeurjolly, D., Gérard, Y., Reveillès, J.P., Tougne, L.: An elementary algorithm for digital arc segmentation. Discrete Appl. Math. 139, 31–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Coeurjolly, D., Miguet, S., Tougne, L.: Discrete curvature based on osculating circle estimation. In: IWVF-4: Proc. 4th Int. Workshop Visual Form, pp. 303–312. Springer, London (2001)

    Google Scholar 

  42. Coeurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.M.: On digital plane preimage structure. Discrete Appl. Math. 151(1–3), 78–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Creutzburg, E., Hübler, A., Wedler, V.: On-line recognition of digital straight line segments. In: Proc. 2nd Int. Conf. AI and Inf. Control Systems of Robots, pp. 42–46 (1982)

    Google Scholar 

  44. Damaschke, P.: The linear time recognition of digital arcs. Pattern Recognit. Lett. 16, 543–548 (1995)

    Article  MATH  Google Scholar 

  45. Danielsson, P.E.: Comments on circle generator for display devices. Comput. Graph. Image Process. 7(2), 300–301 (1978)

    Article  Google Scholar 

  46. Davies, E.: Machine Vision: Theory, Algorithms, Practicalities. Academic Press, London (1990)

    Google Scholar 

  47. Davies, E.R.: A modified Hough scheme for general circle location. Pattern Recognit. 7(1), 37–43 (1984)

    Google Scholar 

  48. Davies, E.R.: A high speed algorithm for circular object detection. Pattern Recognit. Lett. 6, 323–333 (1987)

    Article  Google Scholar 

  49. Davis, L.S., Rosenfeld, A., Agrawala, A.K.: On models for line detection. IEEE Trans. Syst. Man Cybern. 6, 127–133 (1976)

    MATH  Google Scholar 

  50. Debled-Rennesson, I., Reveilles, J.P.: A linear algorithm for segmentation of digital curves. Int. J. Pattern Recognit. Artif. Intell. 9, 635–662 (1995)

    Article  Google Scholar 

  51. de Vieilleville, F., Lachaud, J.O., Feschet, F.: Convex digital polygons, maximal digital straight segments and convergence of discrete geometric estimators. J. Math. Imaging Vis. 27(2), 139–156 (2007)

    Article  Google Scholar 

  52. Dori, D., Liu, W.: Sparse pixel vectorization: an algorithm and its performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 21(3), 202–215 (1999)

    Article  Google Scholar 

  53. Doros, M.: Algorithms for generation of discrete circles, rings, and disks. Comput. Graph. Image Process. 10, 366–371 (1979)

    Article  Google Scholar 

  54. Dunham, J.G.: Optimum uniform piecewise linear approximation of planar curves. IEEE Trans. Pattern Anal. Mach. Intell. 8, 67–75 (1986)

    Article  Google Scholar 

  55. Fan, K., Chen, D., Wen, M.: A new vectorization-based approach to the skeletonization of binary images. In: 3rd Int. Conf. Document Analysis and Recognition, ICDAR 1995 (1995)

    Google Scholar 

  56. Fischler, M.A., Wolf, H.C.: Locating perceptually salient points on planar curves. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 113–129 (1994)

    Article  Google Scholar 

  57. Fisk, S.: Separating point sets by circles, and the recognition of digital disks. IEEE Trans. Pattern Anal. Mach. Intell. 8, 554–556 (1986)

    Article  Google Scholar 

  58. Foley, J.D., Dam, A.V., Feiner, S.K., Hughes, J.F.: Computer Graphics—Principles and Practice. Addison-Wesley, Reading (1993)

    Google Scholar 

  59. Foresti, G.L., Regazzoni, C.S., Vernazza, G.: Circular arc extraction by direct clustering in a 3D Hough parameter space. Signal Process. 41, 203–224 (1995)

    Article  MATH  Google Scholar 

  60. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. EC-10, 260–268 (1961)

    Article  MathSciNet  Google Scholar 

  61. Freeman, H.: Techniques for the digital computer analysis of chain-encoded arbitrary plane curves. In: Proc. National Electronics Conf., vol. 17, pp. 421–432 (1961)

    Google Scholar 

  62. Freeman, H., Davis, L.S.: A corner finding algorithm for chain-coded curves. IEEE Trans. Comput. 26, 297–303 (1977)

    Article  Google Scholar 

  63. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (1993)

    Google Scholar 

  64. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics. Addison-Wesley, London (1994)

    MATH  Google Scholar 

  65. Grantson, M., Levcopoulos, C.: Covering a set of points with a minimum number of lines. In: Calamoneri, T., Finocchi, I., Italiano, G. (eds.) Algorithms and Complexity. LNCS, vol. 3998, pp. 6–17. Springer, Berlin (2006)

    Chapter  Google Scholar 

  66. Guru, D.S., Shekar, B.H., Nagabhushan, P.: A simple and robust line detection algorithm based on small eigenvalue analysis. Pattern Recognit. Lett. 25, 1–13 (2004)

    Article  Google Scholar 

  67. Haralick, R.M.: A measure for circularity of digital figures. IEEE Trans. Syst. Man Cybern. 4, 394–396 (1974)

    MATH  Google Scholar 

  68. Heednacram, A.: The NP-hardness of covering points with lines, paths and tours and their tractability with FPT-algorithms. Ph.D. thesis, Institute for Integrated and Intelligent Systems, Science, Environment, Engineering and Technology, Griffith University (2001)

    Google Scholar 

  69. Held, A., Abe, K., Arcelli, C.: Towards a hierarchical contour description via dominant point detection. IEEE Trans. Syst. Man Cybern. 24, 942–949 (1994)

    Article  Google Scholar 

  70. Hilaire, X., Tombre, K.: Robust and accurate vectorization of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 890–904 (2006)

    Article  Google Scholar 

  71. Hilaire, X., Tombre, K.: Robust and accurate vectorization of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 890–904 (2006)

    Article  Google Scholar 

  72. Horn, B.K.P.: Circle generators for display devices. Comput. Graph. Image Process. 5(2), 280–288 (1976)

    Article  MathSciNet  Google Scholar 

  73. Hsu, S.Y., Chow, L.R., Liu, C.H.: A new approach for the generation of circles. Comput. Graph. Forum 12(2), 105–109 (1993)

    Article  Google Scholar 

  74. Imai, H., Iri, M.: Computational geometric methods for polygonal approximations of a curve. Comput. Vis. Graph. Image Process. 36, 31–41 (1986)

    Article  Google Scholar 

  75. Imiya, A., Ootani, H., Tatara, K.: Medial set, boundary, and topology of random point sets. In: Theoretical Foundations of Computer Vision, pp. 196–217 (2002)

    Google Scholar 

  76. Ioannoua, D., Hudab, W., Lainec, A.: Circle recognition through a 2D Hough transform and radius histogramming. Image Vis. Comput. 17, 15–26 (1999)

    Article  Google Scholar 

  77. Kenmochi, Y., Imiya, A.: Combinatorial topologies for discrete planes. In: DGCI, pp. 144–153 (2003)

    Google Scholar 

  78. Kerautret, B., Lachaud, J.O., Nguyen, T.P.: Circular arc reconstruction of digital contours with chosen Hausdorff error. In: DGCI, pp. 247–259 (2011)

    Google Scholar 

  79. Kim, C.: Digital disks. IEEE Trans. Pattern Anal. Mach. Intell. 6, 372–374 (1984)

    Article  MATH  Google Scholar 

  80. Kim, C.E., Anderson, T.A.: Digital disks and a digital compactness measure. In: Proc. 16th Annual ACM Symposium on Theory of Computing, pp. 117–124 (1984)

    Google Scholar 

  81. Kim, H.S., Kim, J.H.: A two-step circle detection algorithm from the intersecting chords. Pattern Recognit. Lett. 22(6–7), 787–798 (2001)

    Article  MATH  Google Scholar 

  82. Klette, R.: Digital geometry—the birth of a new discipline. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer Academic, Boston (2001)

    Chapter  Google Scholar 

  83. Klette, R.: Topologies on the planar orthogonal grid. In: ICPR (2), pp. 354–357 (2002)

    Google Scholar 

  84. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  85. Klette, R., Rosenfeld, A.: Digital straightness—a review. Discrete Appl. Math. 139(1–3), 197–230 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  86. Klette, R., Žunić, J.: Interactions between number theory and image analysis. In: Latecki, L.J., Mount, D.M., Wu, A.Y. (eds.) Vision Geometry IX. Proc. SPIE, vol. 4117, pp. 210–221 (2000)

    Google Scholar 

  87. Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer Academic, Boston (2001)

    Google Scholar 

  88. Koplowitz, J., Lindenbaum, M., Bruckstein, A.: The number of digital straight lines on an n×n grid. IEEE Trans. Inf. Theory 36, 192–197 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  89. Kovalevsky, V.A.: New definition and fast recognition of digital straight segments and arcs. In: Proc. 10th Int. Conf. Pattern Recognition (ICPR), pp. 31–34. IEEE Comput. Soc., Los Alamitos (1990)

    Chapter  Google Scholar 

  90. Kulpa, Z.: A note on “Circle generator for display devices”. Comput. Graph. Image Process. 9, 102–103 (1979)

    Article  Google Scholar 

  91. Kulpa, Z., Kruse, B.: Algorithms for circular propagation in discrete images. Comput. Vis. Graph. Image Process. 24(3), 305–328 (1983)

    Article  Google Scholar 

  92. Lachaud, J.O., Montanvert, A.: Continuous analogs of digital boundaries: a topological approach to iso-surfaces. Graph. Models 62(3), 129–164 (2000)

    Article  Google Scholar 

  93. Lamiroy, B., Guebbas, Y.: Robust and precise circular arc detection. In: Extended Version of Proc. Eighth Int. Workshop on Graphics Recognition, GREC 2009. LNCS, vol. 6020, pp. 49–60 (2010)

    Google Scholar 

  94. Langerman, S., Morin, P.: Cover things with things. Discrete Comput. Geom. 33(4), 717–729 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  95. Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1185–1190 (2000)

    Article  Google Scholar 

  96. Leavers, V.: Survey: which Hough transform? CVGIP, Image Underst. 58, 250–264 (1993)

    Article  Google Scholar 

  97. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge Mathematical Library (2002)

    MATH  Google Scholar 

  98. McIlroy, M.D.: A note on discrete representation of lines. AT&T Bell Lab. Tech. J. 64(2), 481–490 (1985)

    Google Scholar 

  99. Mcllroy, M.D.: Best approximate circles on integer grids. ACM Trans. Graph. 2(4), 237–263 (1983)

    Article  Google Scholar 

  100. Megiddo, N.: Linear time algorithm for linear programming in ℝ3 and related problems. SIAM J. Comput. 12, 759–776 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  101. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Oper. Res. Lett. 1(5), 194–197 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  102. Mieghem, J.A.V., Avi-Itzhak, H.I., Melen, R.D.: Straight line extraction using iterative total least squares methods. J. Vis. Commun. Image Represent. 6, 59–68 (1995)

    Article  Google Scholar 

  103. Mignosi, F.: On the number of factors of Sturmian words. Theor. Comput. Sci. 82(1), 71–84 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  104. Nakamura, A., Aizawa, K.: Digital circles. Comput. Vis. Graph. Image Process. 26(2), 242–255 (1984)

    Article  Google Scholar 

  105. Nakamura, A., Rosenfeld, A.: Digital calculus. Inf. Sci. 98, 83–98 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  106. Nguyen, T.P., Debled-Rennesson, I.: A linear method for segmentation of digital arcs. Rapport de recherche no. 0001, Centre de recherche INRIA, Nancy (2010)

    Google Scholar 

  107. Pal, S., Bhowmick, P.: Determining digital circularity using integer intervals. J. Math. Imaging Vis. (2011). doi:10.1007/s10851-011-0270-6

    Google Scholar 

  108. Pal, S., Bhowmick, P.: Fast circular arc segmentation based on approximate circularity and cuboid graph (communicated 2011)

    Google Scholar 

  109. Pal, S., Bhowmick, P., Biswas, A.: FACET: a fast approximate circularity estimation technique. In: Proc. Second Int. Conf. Emerging Applications of Information Technology, EAIT-2011, pp. 106–109. IEEE Comput. Soc., Los Alamitos (2011)

    Chapter  Google Scholar 

  110. Pavlidis, T.: Structural Pattern Recognition. Springer, New York (1977)

    MATH  Google Scholar 

  111. Pavlidis, T.: Algorithms for shape analysis and waveforms. IEEE Trans. Pattern Anal. Mach. Intell. 2, 301–312 (1980)

    Article  Google Scholar 

  112. Perez, J.C., Vidal, E.: Optimum polygonal approximation of digitized curves. Pattern Recognit. Lett. 15, 743–750 (1994)

    Article  MATH  Google Scholar 

  113. Pitteway, M.L.V.: Algorithm for drawing ellipses or hyperbolae with a digital plotter. Comput. J. 10(3), 282–289 (1967)

    Article  Google Scholar 

  114. Pitteway, M.L.V.: Integer circles, etc.—some further thoughts. Comput. Graph. Image Process. 3, 262–265 (1974)

    Article  Google Scholar 

  115. Povazan, I., Uher, L.: The structure of digital straight line segments and Euclid’s algorithm. In: Proc. Spring Conf. Computer Graphics, pp. 205–209 (1998)

    Google Scholar 

  116. Pratihar, S., Bhowmick, P.: Shape decomposition using Farey sequence and saddle points. In: Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing, pp. 77–84. ACM, New York (2010)

    Chapter  Google Scholar 

  117. Pratihar, S., Bhowmick, P.: Vectorization of thick digital lines using Farey sequence and geometric refinement. In: Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing, pp. 518–525. ACM, New York (2010)

    Chapter  Google Scholar 

  118. Richard, A., Wallet, G., Fuchs, L., Andres, E., Largeteau-Skapin, G.: Arithmetization of a circular arc. In: Proc. 15th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI ’09. LNCS, vol. 5810, pp. 350–361. Springer, Berlin (2009)

    Chapter  Google Scholar 

  119. Ritter, N., Cooper, J.: New resolution independent measures of circularity. J. Math. Imaging Vis. 35(2), 117–127 (2009)

    Article  MathSciNet  Google Scholar 

  120. Rocha, J., Bernardino, R.: Singularities and regularities on line pictures via symmetrical trapezoids. IEEE Trans. Pattern Anal. Mach. Intell. 20(4), 391–395 (1998)

    Article  Google Scholar 

  121. Rodríguez, M., Abdoulaye, S., Largeteau-Skapin, G., Andres, E.: Generalized perpendicular bisector and circumcenter. In: Computational Modeling of Objects Represented in Images, 2nd Int. Symposium CompIMAGE 2010. LNCS, vol. 6026, pp. 1–10. Springer, Berlin (2010)

    Chapter  Google Scholar 

  122. Rosenfeld, A.: Digital straight line segments. IEEE Trans. Comput. 23(12), 1264–1268 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  123. Rosenfeld, A., Kak, A.C.: Digital Picture Processing, 2nd edn. Academic Press, New York (1982)

    Google Scholar 

  124. Rosenfeld, A., Klette, R.: Digital straightness. Electronic Notes in Theor. Comput. Sci. 46, 1–32 (2001). http://www.elsevier.nl/locate/entcs/volume46.html

    Article  Google Scholar 

  125. Rosin, P.L.: Techniques for assessing polygonal approximation of curves. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 659–666 (1997)

    Article  Google Scholar 

  126. Rosin, P.L., West, G.A.W.: Non-parametric segmentation of curves into various representations. IEEE Trans. Pattern Anal. Mach. Intell. 17, 1140–1153 (1995)

    Article  Google Scholar 

  127. Roussillon, T., Sivignon, I., Tougne, L.: On-line recognition of digital circular arcs. In: Proc. 15th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI ’09. LNCS, vol. 5810, pp. 34–45. Springer, Berlin (2009)

    Chapter  Google Scholar 

  128. Roussillon, T., Sivignon, I., Tougne, L.: Measure of circularity for parts of digital boundaries and its fast computation. Pattern Recognit. 43(1), 37–46 (2010)

    Article  MATH  Google Scholar 

  129. Roussillon, T., Tougne, L., Sivignon, I.: On three constrained versions of the digital circular arc recognition problem. In: Proc. 15th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI ’09. LNCS, vol. 5810, pp. 34–45. Springer, Berlin (2009)

    Chapter  Google Scholar 

  130. Saha, P.K., Chaudhuri, B.B.: 3d digital topology under binary transformation with applications. Comput. Vis. Image Underst. 63(3), 418–429 (1996)

    Article  Google Scholar 

  131. Saha, P.K., Chaudhuri, B.B., Chanda, B., Majumder, D.D.: Topology preservation in 3d digital space. Pattern Recognit. 27(2), 295–300 (1994)

    Article  Google Scholar 

  132. Said, M., Lachaud, J.O., Feschet, F.: Multiscale discrete geometry. In: DGCI, pp. 118–131 (2009)

    Google Scholar 

  133. Sarkar, D.: A simple algorithm for detection of significant vertices for polygonal approximation of chain-coded curves. Pattern Recognit. Lett. 14, 959–964 (1993)

    Article  Google Scholar 

  134. Sauer, P.: On the recognition of digital circles in linear time. Comput. Geom. 2, 287–302 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  135. Schröder, K., Laurent, P.: Efficient polygon approximations for shape signatures. In: Proc. Int. Conf. Image Processing (ICIP), pp. 811–814. IEEE Comput. Soc., Los Alamitos (1999)

    Google Scholar 

  136. Schroeder, M.: Fractions: continued, Egyptian and Farey (Chap. 5). In: Number Theory in Science and Communication. Springer Series in Information Sciences, vol. 7 (2006)

    Google Scholar 

  137. Schuster, G.M., Katsaggelos, A.K.: An optimal polygonal boundary encoding scheme in the rate distortion sense. IEEE Trans. Circuits Syst. Video Technol. 7, 13–26 (1998)

    MathSciNet  MATH  Google Scholar 

  138. Smeulders, A.W.M., Dorst, L.: Decomposition of discrete curves into piecewise segments in linear time. Contemp. Math. 119, 169–195 (1991)

    Article  MathSciNet  Google Scholar 

  139. Song, J.: An object oriented progressive-simplification based vectorization system for engineering drawings: model, algorithm, and performance. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 890–904 (2002)

    Google Scholar 

  140. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Chapman & Hall, London (1993)

    Google Scholar 

  141. Suenaga, Y., Kamae, T., Kobayashi, T.: A high speed algorithm for the generation of straight lines and circular arcs. IEEE Trans. Comput. 28, 728–736 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  142. Teh, C.H., Chin, R.T.: On the detection of dominant points on digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 2(8), 859–872 (1989)

    Article  Google Scholar 

  143. Ventura, J.A., Chen, J.M.: Segmentation of two-dimensional curve contours. Pattern Recognit. 25, 1129–1140 (1992)

    Article  Google Scholar 

  144. Voss, K.: Coding of digital straight lines by continued fractions. Comput. Artif. Intell. 10, 75–80 (1991)

    MathSciNet  Google Scholar 

  145. Wall, K., Danielsson, P.E.: A fast sequential method for polygonal approximation of digitized curves. Comput. Vis. Graph. Image Process. 28, 220–227 (1984)

    Article  Google Scholar 

  146. Weisstein, E.W.: Sagitta. From MathWorld—a Wolfram web resource. http://mathworld.wolfram.com/Sagitta.html (1993)

  147. Worring, M., Smeulders, A.W.M.: Digitized circular arcs: characterization and parameter estimation. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 587–598 (1995)

    Article  Google Scholar 

  148. Wright, W.E.: Parallelization of Bresenham’s line and circle algorithms. IEEE Comput. Graph. Appl. 10(5), 60–67 (1990)

    Article  Google Scholar 

  149. Wu, L.D.: A piecewise linear approximation based on a statistical model. IEEE Trans. Pattern Anal. Mach. Intell. 6, 41–45 (1984)

    Article  MATH  Google Scholar 

  150. Wu, X., Rokne, J.G.: Double-step incremental generation of lines and circles. Comput. Vis. Graph. Image Process. 37(3), 331–344 (1987)

    Article  Google Scholar 

  151. Wuescher, D.M., Boyer, K.L.: Robust contour decomposition using a constant curvature criterion. IEEE Trans. Pattern Anal. Mach. Intell. 13(1), 41–51 (1991)

    Article  Google Scholar 

  152. Xie, Y., Ji, Q.: Effective line detection with error propagation. In: Proc. Int. Conf. Image Processing (ICIP), pp. 181–184. IEEE Comput. Soc., Los Alamitos (2001)

    Google Scholar 

  153. Yao, C., Rokne, J.G.: Hybrid scan-conversion of circles. IEEE Trans. Vis. Comput. Graph. 1(4), 311–318 (1995)

    Article  Google Scholar 

  154. Yin, P.Y.: A new method for polygonal approximation using genetic algorithms. Pattern Recognit. Lett. 19(11), 1017–1026 (1998)

    Article  MATH  Google Scholar 

  155. Yin, P.Y.: Ant colony search algorithms for optimal polygonal approximation of plane curves. Pattern Recognit. 36, 1783–1797 (2003)

    Article  MATH  Google Scholar 

  156. Yin, P.Y.: A discrete particle swarm algorithm for optimal polygonal approximation of digital curves. J. Vis. Commun. Image Represent. 15(2), 241–260 (2004)

    Article  Google Scholar 

  157. Zou, J., Yan, H.: Line image vectorization based on shape partitioning and merging. In: Proc. ICPR 2000, vol. 3, pp. 994–997 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Bhowmick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bhowmick, P., Bhattacharya, B.B. (2012). Digital Straightness, Circularity, and Their Applications to Image Analysis. In: Brimkov, V., Barneva, R. (eds) Digital Geometry Algorithms. Lecture Notes in Computational Vision and Biomechanics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4174-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4174-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4173-7

  • Online ISBN: 978-94-007-4174-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics