Skip to main content

Separable Distance Transformation and Its Applications

  • Chapter
Digital Geometry Algorithms

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 2))

Abstract

In binary shape analysis, the distance transformation (DT) and its by-products are fundamental in many applications since they provide volumetric and metric information about the input shape. In this chapter, we present a survey on a specific approach (the dimension by dimension techniques) for the Euclidean metric and with discuss its performances and its generalizations to higher dimension or to specific grid models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CGAL, Computational Geometry Algorithms Library, http://www.cgal.org.

  2. 2.

    More details can be found in [63] and on the page http://www.itk.org/Doxygen/html/classitk_1_1SignedMaurerDistanceMapImageFilter.html.

  3. 3.

    Digital Geometry tools and algorithms, http://liris.cnrs.fr/dgtal.

References

  1. Amenta, N., Choi, S., Kolluri, R.K.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. 19(2–3), 127–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attali, D., Boissonnat, J.-D., Edelsbrunner, H.: Stability and computation of medial axes—a state-of-the-art report. In: Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Mathematics and Visualization, pp. 109–125. Springer, Berlin (2009)

    Chapter  Google Scholar 

  3. Attali, D., Edelsbrunner, E.: Inclusion-exclusion formulas for independent complexes. Discrete Comput. Geom. 37(1), 59–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aurenhammer, F.: Power diagrams: properties, algorithms, and applications. SIAM J. Comput. 16, 78–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blum, H.: A transformation for extracting descriptors of shape. In: Models for the Perception of Speech and Visual Forms (1967)

    Google Scholar 

  6. Boissonnat, J.D., Cerezo, A., Devillers, O., Duquesne, J., Yvinec, M.: An algorithm for constructing the convex hull of a set of spheres in dimension d. Comput. Geom. 6(2), 123–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph. Image Process. 34(3), 344–371 (1986)

    Article  Google Scholar 

  8. Breu, H., Kirkpatrick, D., Werman, M.: Linear time Euclidean distance transform algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 17(5), 529–533 (1995)

    Article  Google Scholar 

  9. Broutta, A., Coeurjolly, D., Sivignon, I.: Hierarchical discrete medial axis for sphere-tree construction. In: International Workshop on Combinatorial Image Analysis, IWCIA 2009. Lecture Notes in Computer Science, vol. 5852, pp. 56–67. Springer, Berlin (2009)

    Chapter  Google Scholar 

  10. Cao, T.T., Tang, K., Mohamed, A., Tan, T.S.: Parallel banding algorithm to compute exact distance transform with the GPU. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, SI3D 2010, pp. 83–90 (2010)

    Google Scholar 

  11. Chaussard, J., Bertrand, G., Couprie, M.: Characterizing and detecting toric loops in n-dimensional discrete toric spaces. In: International Conference on Discrete Geometry for Computer Imagery, DGCI 2008. Lecture Notes in Computer Science, vol. 4992. Springer, Berlin (2008)

    Google Scholar 

  12. Chehadeh, Y., Coquin, D., Bolon, P.: A skeletonization algorithm using chamfer distance transformation adapted to rectangular grids. In: IEEE International Conference on Pattern Recognition, ICPR 1996, vol. 2, pp. 131–135 (1996)

    Chapter  Google Scholar 

  13. Chen, L., Panin, G., Knoll, A.: Multi-camera people tracking with hierarchical likelihood grids. In: International Conference on Computer Vision Theory and Applications, VISAPP 2011 (2011)

    Google Scholar 

  14. Ciuc, M., Coquin, D., Bolon, P.: Quantitative assessment of two skeletonization algorithms adapted to rectangular grids. In: International Conference on Image Analysis and Processing, CIAP 1997, vol. 1, pp. 588–595 (1997)

    Google Scholar 

  15. Coeurjolly, D.: Distance transformation, reverse distance transformation and discrete medial axis on toric spaces. In: IEEE International Conference on Pattern Recognition, ICPR 2008, pp. 1–4 (2008)

    Chapter  Google Scholar 

  16. Coeurjolly, D., Montanvert, A.: Optimal separable algorithms to compute the reverse Euclidean distance transformation and discrete medial axis in arbitrary dimension. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 437–448 (2007)

    Article  Google Scholar 

  17. Coeurjolly, D., Zerarga, L.: Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids. Comput. Graph. 30(1), 46–53 (2006)

    Article  Google Scholar 

  18. Coléou, C., Lesaffre, B., Brzoska, J.-B., Ludwig, W., Boller, E.: Three-dimensional snow images by X-ray microtomography. Ann. Glaciol. (2001). doi:10.3189/172756401781819418

    Google Scholar 

  19. Cuisenaire, O.: Locally adaptable mathematical morphology using distance transformations. Pattern Recognit. 39(3), 405–416 (2006)

    Article  MATH  Google Scholar 

  20. Cuisenaire, O., Macq, B.: Fast Euclidean distance transformation by propagation using multiple neighborhoods. Comput. Vis. Image Underst. 76(2), 163–172 (1999)

    Article  Google Scholar 

  21. Culver, T., Keyser, J., Lin, M., Manocha, D.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: International Conference on Computer Graphics and Interactive Techniques, pp. 277–286 (1999)

    Google Scholar 

  22. Danielsson, P.E.: Euclidean distance mapping. Comput. Graph. Image Process. 14, 227–248 (1980)

    Article  Google Scholar 

  23. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (2000)

    MATH  Google Scholar 

  24. Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal, and triangular arrays. Commun. ACM 15(9), 827–837 (1972)

    Article  Google Scholar 

  25. Devillers, O.: Improved incremental randomized Delaunay triangulation. In: Annual ACM Symposium on Computational Geometry, pp. 106–115 (1998)

    Google Scholar 

  26. Enzweiler, M., Gavrila, D.M.: Monocular pedestrian detection: survey and experiments. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2179–2195 (2009)

    Article  Google Scholar 

  27. Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algorithms: a comparative survey. ACM Comput. Surv. 40(1), 1–44 (2008)

    Article  Google Scholar 

  28. Fouard, C.: Extraction de paramètres morphométriques pour l’étude du réseau micro-vasculaire cérébral. Ph.D. thesis, Université de Nice Sophia Antipolis (2005)

    Google Scholar 

  29. Fouard, C., Malandain, G.: 3-D chamfer distances and norms in anisotropic grids. Image Vis. Comput. 23(2), 143–158 (2005)

    Article  Google Scholar 

  30. Fouard, C., Malandain, G., Prohaska, S., Westerhoff, M.: Blockwise processing applied to brain microvascular network study. IEEE Trans. Med. Imaging 25(10), 1319–1328 (2006)

    Article  Google Scholar 

  31. Fouard, C., Strand, R., Borgefors, G.: Weighted distance transforms generalized to modules and their computation on point lattices. Pattern Recognit. 40(9), 2453–2474 (2007)

    Article  MATH  Google Scholar 

  32. Gotsman, C., Lindenbaum, M.: Euclidean Voronoi labelling on the multidimensional grid. Pattern Recognit. Lett. 16, 409–415 (1995)

    Article  Google Scholar 

  33. Grundmann, M., Meier, F., Essa, I.: 3D shape context and distance transform for action recognition. In: IEEE International Conference on Pattern Recognition, ICPR 2008 (2008)

    Google Scholar 

  34. Guan, W., Ma, S.: A list-processing approach to compute Voronoi diagrams and the euclidean distance transform. IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 757–761 (1998)

    Article  Google Scholar 

  35. Hayashi, T., Nakano, K., Olariu, S.: Optimal parallel algorithms for finding proximate points, with applications. IEEE Trans. Parallel Distrib. Syst. 9(12), 1153–1166 (1998)

    Article  Google Scholar 

  36. Hirata, T.: A unified linear-time algorithm for computing distance maps. Inf. Process. Lett. 58(3), 129–133 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Karavelas, M.I.: Voronoi diagrams in CGAL. In: European Workshop on Computational Geometry, EWCG 2006, pp. 229–232 (2006)

    Google Scholar 

  38. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Mateo (2004)

    MATH  Google Scholar 

  39. Lau, B., Sprunk, C., Burgard, W.: Improved updating of Euclidean distance maps and Voronoi diagrams. In: IEEE International Conference on Intelligent Robots and Systems, IROS 2010 (2010)

    Google Scholar 

  40. Maurer, C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)

    Article  Google Scholar 

  41. Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: International Symposium on Mathematical Morphology, ISMM 2000, pp. 331–340 (2000)

    Google Scholar 

  42. Michikawa, T., Suzuki, H.: Sparse grid distance transforms. Graph. Models 72(4), 35–45 (2010)

    Article  Google Scholar 

  43. Montanari, U.: Continuous skeletons from digitized images. J. ACM 16(1), 534–549 (1969)

    Article  MATH  Google Scholar 

  44. Mukherjee, J., Das, P.P., Kumarb, M.A., Chatterjib, B.N.: On approximating euclidean metrics by digital distances in 2D and 3D. Pattern Recognit. Lett. 21(6–7), 573–582 (2000)

    Article  Google Scholar 

  45. Mullikin, J.C.: The vector distance transform in two and three dimensions. CVGIP, Graph. Models Image Process. 54(6), 526–535 (1992)

    Article  Google Scholar 

  46. Nagy, B.: A comparison among distances based on neighborhood sequences in regular grids. In: Image Analysis, 14th Scandinavian Conference. Lecture Notes in Computer Science, vol. 3540, pp. 1027–1036. Springer, Berlin (2005)

    Google Scholar 

  47. Park, S.H., Lee, S.S., Kim, J.H.: The Delaunay triangulation by grid subdivision. In: Computational Science and Its Applications, pp. 1033–1042 (2005)

    Google Scholar 

  48. Prevost, S., Lucas, L., Bittar, E.: Multiresolution and shape optimization of implicit skeletal model. In: Winter School in Computer Graphics and Visualization, WSCG 2001 (2001)

    Google Scholar 

  49. Ragnemalm, I.: The Euclidean distance transform. Ph.D. thesis, Linköping University (1993)

    Google Scholar 

  50. Remy, E., Thiel, E.: Optimizing 3D chamfer masks with norm constraints. In: International Workshop on Combinatorial Image Analysis, Caen, pp. 39–56 (2000)

    Google Scholar 

  51. Rong, G., Tan, T.-S.: Jump flooding in GPU with applications to Voronoi diagram and distance transform. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, SI3D 2006, p. 109 (2006)

    Google Scholar 

  52. Rong, G., Tan, T.-S.: Variants of jump flooding algorithm for computing discrete Voronoi diagrams. In: IEEE International Symposium on Voronoi Diagrams in Science and Engineering, ISVD 2007, pp. 176–181 (2007)

    Google Scholar 

  53. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966)

    Article  MATH  Google Scholar 

  54. Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recognit. 1(1), 33–61 (1968)

    Article  MathSciNet  Google Scholar 

  55. Saito, T., Toriwaki, J.-I.: New algorithms for Euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recognit. 27(11), 1551–1565 (1994)

    Article  Google Scholar 

  56. Samet, H.: A quadtree medial axis transform. Commun. ACM 26(9), 680–693 (1983)

    Article  Google Scholar 

  57. Samet, H.: Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley, Reading (1990)

    Google Scholar 

  58. Schouten, T., Broek, E.V.: Fast exact Euclidean distance (FEED) transformation. In: IEEE International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 594–597 (2004)

    Google Scholar 

  59. Sintorn, I.-M., Borgefors, G.: Weighted distance transforms for volume images digitized in elongated voxel grids. Pattern Recognit. Lett. 25(5), 571–580 (2004)

    Article  Google Scholar 

  60. Strand, R.: Distance functions and image processing on point-lattices with focus on the 3D face- and body-centered cubic grids. Ph.D. thesis, Uppsala University (2008)

    Google Scholar 

  61. Sud, A., Otaduy, M.A., Manocha, D.: DiFi: fast 3D distance field computation using graphics hardware. Comput. Graph. Forum 23(3), 557–566 (2004)

    Article  Google Scholar 

  62. Tam, R., Heidrich, W.: Shape simplification based on the medial axis transform. In: IEEE Visualization, VIS 2003 (2003)

    Google Scholar 

  63. Tustison, N.J., Suquiera, M., Gee, J.C.: N-D linear time exact signed Euclidean distance transform. Insight J. (January–June 2006). http://hdl.handle.net/1926/171

  64. Vacavant, A.: Fast distance transformation on two-dimensional irregular grids. Pattern Recognit. 43(10), 3348–3358 (2010)

    Article  MATH  Google Scholar 

  65. Vacavant, A., Coeurjolly, D.: Medial axis extraction on irregular isothetic grids. In: International Workshop on Combinatorial Image Analysis, IWCIA 2009. Progress in Combinatorial Image Analysis, pp. 207–220. Research Publishing Service, Singapore (2009)

    Google Scholar 

  66. Vacavant, A., Coeurjolly, D., Tougne, L.: Distance transformation on two-dimensional irregular isothetic grids. In: International Conference on Discrete Geometry for Computer Imagery, DGCI 2008. Lecture Notes in Computer Science, vol. 4292, pp. 238–249. Springer, Berlin (2008)

    Chapter  Google Scholar 

  67. Vacavant, A., Coeurjolly, D., Tougne, L.: A novel algorithm for distance transformation on irregular isothetic grids. In: International Conference on Discrete Geometry for Computer Imagery, DGCI 2009. Lecture Notes in Computer Science, vol. 5810, pp. 469–480. Springer, Berlin (2009)

    Chapter  Google Scholar 

  68. Vacavant, A., Coeurjolly, D., Tougne, L.: Separable algorithms for distance transformations on irregular grids. Pattern Recognit. Lett. 32(9), 1356–1364 (2011)

    Article  Google Scholar 

  69. van den Broek, E.L., Schouten, T.E.: Distance transforms: academics versus industry. Recent Patents Comput. Sci. 4(1), 1–15 (2011)

    Article  Google Scholar 

  70. Voronoi, G.: Nouvelles applications des paramtres continus la théorie des formes quadratiques. Deuxième mémoire : Recherches sur les parallélloèdres primitifs. J. Reine Angew. Math. 134, 198–287 (1908)

    MATH  Google Scholar 

  71. Vörös, J.: Low-cost implementation of distance maps for path planning using matrix quadtrees and octrees. Robot. Comput.-Integr. Manuf. 17(13), 447–459 (2001)

    Article  Google Scholar 

  72. Wong, W.T., Shih, F.Y., Su, T.F.: Thinning algorithms based on quadtree and octree representations. Inf. Sci. 176(10), 1379–1394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Coeurjolly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coeurjolly, D., Vacavant, A. (2012). Separable Distance Transformation and Its Applications. In: Brimkov, V., Barneva, R. (eds) Digital Geometry Algorithms. Lecture Notes in Computational Vision and Biomechanics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4174-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4174-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4173-7

  • Online ISBN: 978-94-007-4174-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics