Skip to main content

Evolution of the Cell’s Mechanical Design

  • Chapter
  • First Online:
The Minimal Cell
  • 1038 Accesses

Abstract

The mechanical properties of the cell’s structural components influence the size, shape, and functionality of the cell throughout its division cycle. For example, a combination of the plasma membrane’s edge tension and bending resistance sets a lower bound on cell size, while the membrane’s tear resistance sets a pressure-dependent upper bound on the size of cells lacking a cell wall. The division cycle of the simplest cells may be dominated by one or two principles such as the maximization of entropy, or the minimization of energy or structural materials. By studying colonies of cells, modern and fossilized, with techniques from classical and statistical mechanics, a partial history can be charted for the appearance and properties of the simplest cell designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barghoorn ES, Schopf JW (1966) Microorganisms three billion years old from the Precambrian of South Africa. Science 152:758–763

    Article  CAS  PubMed  Google Scholar 

  • Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint chert. Science 147:563–577

    Article  CAS  PubMed  Google Scholar 

  • Bennett S, Boal DH, Ruotsalainen H (2007) Growth modes of 2-Ga microfossils. Paleobiology 33:382–396

    Article  Google Scholar 

  • Boal DH (2002) Mechanics of the cell. Cambridge University Press, Cambridge

    Google Scholar 

  • Boal DH, Forde CE (2010) Unpublished

    Google Scholar 

  • Boal DH, Jun S (2010) Unpublished

    Google Scholar 

  • Boal DH, Ng J (2010) Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria. Paleobiology 36:555–572

    Google Scholar 

  • Boal DH, Rao M (1992) Topology changes in fluid membranes. Phys Rev A46:3037–3045

    Google Scholar 

  • Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of Λ-phage DNA. Science 265:1599–1600

    Article  CAS  PubMed  Google Scholar 

  • Cloud PE Jr (1965) Significance of the Gunflint (Precambrian) microflora. Science 148:27–35

    Article  PubMed  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Evans E, Rawicz W (1990) Entropy-driven tension and elasticity in condensed-fluid membranes. Phys Rev Lett 64:2094–2097

    Article  CAS  PubMed  Google Scholar 

  • Fromhertz P (1983) Lipid-vesicle structure: size control by edge-active agents. Chem Phys Lett 94:259–266

    Article  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28c:693–703

    Google Scholar 

  • Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Paleo 50:1040–1073

    Google Scholar 

  • Killander D, Zetterberg A (1965) A quantitative cytochemical investigation of the relationship between cell mass and initiation of DNA synthesis in mouse fibroblasts in vitro. Experimental Cell Research, 40:12–20

    Google Scholar 

  • Luisi PL (2006) The emergence of life: from chemical origins to synthetic biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Needham D, Hochmuth RM (1989) Electromechanical permeabilization of lipid vesicles. Biophys J 55:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3.235-million-year-old volcanogenic massive sulphide deposit. Nature 405:676–679

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW (1968) Microflora of the bitter springs formation, Late Precambrian, central Australia. J Paleo 42:651–688

    Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  CAS  PubMed  Google Scholar 

  • Walsh MM, Lowe DR (1985) Filamentous microfossils from the 3, 500 Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314:530–532

    Article  Google Scholar 

  • Zhu TF, Szostak JW (2009) Coupled growth and division of model protocell membranes. J Am Chem Soc 131:5705–5713

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Boal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Boal, D., Forde, C. (2011). Evolution of the Cell’s Mechanical Design. In: Luisi, P., Stano, P. (eds) The Minimal Cell. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9944-0_2

Download citation

Publish with us

Policies and ethics