Skip to main content

Innovation Framework for Generating Electricity from Wind Power

  • Chapter
  • First Online:
Renewable Energies in Germany’s Electricity Market
  • 1498 Accesses

Abstract

The innovation biography of wind power in Germany underwent six phases. On the one hand, this development was characterized by the technology’s successful expansion and its increasing efficiency. On the other hand, however, wind power gave rise to public debate as acceptance of wind turbines decreased during the expansion phase. These challenges were countered by policies from state actors at the regional and local level. Apart from hydropower, wind power is regarded as the trailblazer for renewable energies – it managed to become established as a new form of decentralized, renewable energy. This was possible in spite the fact that it has been difficult to integrate wind power into the energy supply system due to its intermittent nature, and despite resistance from actors of the fossil-nuclear energy supply system.

The successful establishment of wind power has been possible as a result of continually adjusting the policy approaches at various governance levels. Along with the amount, duration and reliability of the feed-in compensation, which was of crucial importance, the funding policy and the zoning and building law were additional decisive factors. The harnessing of offshore and onshore wind power differs in nature. Due to their large-scale scope and high investment requirements, offshore wind power plants resemble, to some degree, centralized power utility systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Albert Betz worked at the Aerodynamische Versuchsanstalt Göttingen (Heymann 1995, 117). He developed a fluid mechanics theory for turbines, which even today forms the basis of calculations of wind turbine characteristics (Twele 2005a, 20; Gasch & Twele 2005, 32).

  2. 2.

    The problems with GROWIAN led to the construction of a smaller machine: GROWIAN II (also referred to as WKA-60). The turbine height was limited to 44 m. The three-bladed rotor was notable for its quiet running; its diameter was a mere 60 m. In contrast to GROWIAN, the WKA-60 had a so-called upwind rotor – the rotor turned on the windward side of the tower. The electrical capacity of the WKA-60 was 1.2 MW. This turbine was constructed in 1990 in order to supply power for the island of Helgoland. In 1995 it had to be taken down due to the damage caused to the rotor blades by multiple lightning strikes. In total, only four turbines of this design were built.

  3. 3.

    Aeolus II had two rotor blades, a rotor diameter of 80 m and a capacity of 3,000 kW (Hau 2003, 54).

  4. 4.

    Monopteros had just one rotor blade, a rotor diameter of 48 m and a capacity of 600 kW (Hau 2003, 52).

  5. 5.

    The 50 m long rotor blades of GROWIAN could not be manufactured using the desired composite construction method. They had to be reinforced with steel, resulting in a 2 ton increase in weight. As a consequence, the hub had to be significantly strengthened. This ultimately resulted in a doubling in weight for the nacelle. The first attempts at running the turbine at maximum load resulted in cracks in the hub.

  6. 6.

    Lönker (2006, pers. comm.) tells of the erection of a 24 m high ENERCON E-66 near the lignite-fired power station Ibbenbüren in 1982. The turbine was described as an “enormous monster”, even though it was vanishingly small in comparison to the power station.

  7. 7.

    The Darrieus rotor was invented by the Frenchman George Darrieus and patented in the USA in 1931.

  8. 8.

    The 100 MW program granted claims either in the form of an investment subsidy (up to 60% of the investment costs) or a supplement to the negotiated feed-in tariff (predecessor of the StrEG) amounting to 4 euro cents/kWh.

  9. 9.

    The states invested more than 1 billion euros in renewable energy between 1991 and 2001. Of this, 14.5% (216 million euros) were invested in wind power (Staiß 2003, I–162).

  10. 10.

    The sources for the legal information used in this chapter are given in the Index of Legal Sources.

  11. 11.

    ERP funds were originally funds from the European Recovery Programme (ERP) which were made available in the 1948 Marshall Plan for the rehabilitation of the German economy.

  12. 12.

    The term Außenbereich comes from German zoning law and describes a category of areas which are not within the area designated by a binding land-use plan and which are not part of the already built-up area (Innenbereich).

  13. 13.

    The zoning category of “appropriate areas” was introduced by the BauROG 1998 (cf. Index of Legal Sources). The appropriate wind use areas were identified by overlaying criteria indicating high wind yield with minimal clearance criteria. The latter were meant to avoid conflicts with other land uses (like habitation, recreation) and protection needs (e.g. bird protection, cultural heritage, visual landscape).

  14. 14.

    For instance, the manufacturer Tacke Windtechnik originated as a gear manufacturer while Husumer Schiffswerft and Jacobs-Energie took advantage of wind turbine manufacture as a way of expanding their production, which had previously concentrated on shipbuilding (Hemmelskamp & Jörg 1999, 94).

  15. 15.

    Besides the technical development of turbines, significant research activity was carried out in universities and independent research institutes; e.g. development in material science, aerodynamics, electrical supply engineering, measurement and control technology, meteorology etc. (Hoppe-Kilpper 2003, 95).

  16. 16.

    Manufacturer market shares in 1998: Enercon 32.5%; NEG Micon 14.4%; Vestas Deutschland 13%; Tacke Windenergie 12.9%; AN Windenergie 9.8%; Nordex Balcke-Dürr 7.4%; Husumer Schiffswerft 1.5%; Südwind 1% and other 6% (Wind/Energie/Aktuell 8/98). Available online at http://www.windkraft.de/... (Accessed: 15 September 2009).

  17. 17.

    The journals Neue Energie and Wind/Energie Aktuell (the latter now known as: Erneuerbare Energien) were first published during this phase, for instance.

  18. 18.

    Represented in position paper of BUND – Landesverband Niedersachsen e.V. (1996).

  19. 19.

    Cf. ARGE Eingriffsregelung (1996).

  20. 20.

    Cf. e.g. Hasse & Schwahn (1992); Nohl (1993); Dattke & Sperber (1994); Klöppel & Krause (1996).

  21. 21.

    Cf. inter alia Kleinschmidt et al. (1994); Breuer (1996); BUND (1996, 2001).

  22. 22.

    For example “Naturstrom- und Windkrafteuphorie in Deutschland und ihre Folgen”; http://wilfriedheck.de/, the “unofficial” Bundesverband Landschaftsschutz website (Accessed: 6 August 2009).

  23. 23.

    Projects with a licensing privilege in non-urbanized areas have to be given approval, unless they are not compatible with public interests (see Section 35 of the Federal Building Act).

  24. 24.

    Cf. Der Spiegel, 8 May 1995.

  25. 25.

    Cf. Johnsen (1997, 8) cited in Hemmelskamp & Jörg (1999, 86).

  26. 26.

    The case was transferred to the European Court of Justice. On 20 July 1999, and with concerns regarding state aid, the EU Commission resolved to set into motion a procedure against the German Federal Government.

  27. 27.

    Site decisions are primarily controlled by orders from the chief planning authority of each state. To an extent, they also contain conservation-based zoning requirements (for protected areas, areas important for birds, aesthetically sensitive areas). Within the context of public consultations, conservation-based formulations of zoning requirements can end up not just coordinating events, but can also have a restrictive effect when they are involved in the planning process.

  28. 28.

    National Climate Protection Programme. Federal Government resolution of 18 October 2000. Fifth report from the interministerial working group ‘CO2 Reduction’. http://www.bmu.de/files/pdfs/ (Accessed: 6 August 2009).

  29. 29.

    In this respect, this appeal had a lasting effect on the process for the approval of wind turbines (Cf. Rehfeld et al. 2001; Neumann 2001; Neumann et al. 2002).

  30. 30.

    Federal Administrative Court decision 4 C 15.01 of 17 December 2002 made it clear that such a practice would be unlawful and such planning would therefore be open to legal appeal.

  31. 31.

    Following the amendment of the Federal Regional Planning Act (Bundesraumordnungsgesetz – ROG) in 1997 and the corresponding amendment of the State Regional Planning laws in 1998, the utilization of wind power became a matter for regional planning. The introduction of a regulatory mechanism at the regional level was especially necessary in the case of the states of the former GDR, where there was no comprehensive legally binding land-use planning already available and so no effective possibilities for regulation at the municipality level (von Nicolai 2005, pers. comm.). Wind power production targets were prescribed in state regional planning programs and broken down to the regional level. For instance, in Lower Saxony, precise MW specifications were provided for individual administrative districts.

  32. 32.

    Cf. verdict of 13 March 2001, Rs. C-379/98 “Die Vereinbarkeit des Stromeinspeisegesetzes und des EEG mit dem primären Europarecht”. Commentary in Natur und Recht 2002, p. 148.

  33. 33.

    Variable speed turbines have the advantage of being able to produce electricity of the required power frequency independently of their rotation speed.

  34. 34.

    In the summer of 2002, the Bundestag commissioned the German Energy Agency (dena) to set up and implement the Renewable Energy Export Initiative (Bundestagsantrag 14/8278). The aim of the export initiative was (and is) to support networking and activities such as support of the export of renewable energy technologies (BT-Drs. 15/1862 of 31 October 2003).

  35. 35.

    The alliance consisted of environmental and conservation organizations (Naturschutzbund Deutschland – NABU), other environmental groups, renewable energy associations, the German Farmers’ Union, turbine manufacturers, protestant churches and the German Industrial Union of Metalworkers (IG Metall) (Tacke 2004, 214). The principal organizer of the event, which had 5,000 participants, was the BWE (Federal Wind Energy Association), which had only been founded a few months before.

  36. 36.

    The founding members of the forum were the following companies: Energiekontor AG, Future Energy AG, GEO mbH, Neptun TechnoProduct GmbH, Plambeck Neue Energien AG, PROKON Nord Energiesysteme GmbH, Amrumbank West GmbH, 1. SHOW-VG mbH and Winkra-Energie GmbH. Cf. www.iwr.de/... (Accessed: 11 May 2009).

  37. 37.

    E.g. BUND (Bund Naturschutz Deutschland); DNR (Deutscher Naturschutzring); NABU (Naturschutzbund Deutschland).

  38. 38.

    A further amendment was implemented in 2008.

  39. 39.

    “Repowering” is the term used to refer to the exchange of old turbines for newer, higher-capacity models.

  40. 40.

    Cf. the regulations affecting offshore wind power in EEG 2004 in Section 0.

  41. 41.

    Cf. www.eeg-aktuell.de (Accessed: 2 February 2009).

  42. 42.

    § 66 para. 1 clause 1 EEG.

  43. 43.

    Additionally, grid operators are, according to the new EEG, expressly required not only to carry out grid expansion, but also optimization and enhancement of existing transmission networks.

  44. 44.

    Cf. inter alia BUND 2004; Hötker et al. 2004; Sprötge et al. 2004.

  45. 45.

    In Schleswig-Holstein, at the end of 2003, ca. 25% of electricity consumption was covered by wind power (Rohwer 2004). By the end of 2003, 2,547 wind turbines, with an installed capacity of around 2,000 MW and a productivity of some 3,000 Gigawatt hours had been installed. The energy concept of Schleswig-Holstein, written in 1992, had aimed to achieve this amount by 2010.

  46. 46.

    In the turbine approval guidelines according to the Federal Immission Control Act (BImSchG; cf. Index of Legal Sources), the required maximum noise levels and minimum distances to residential areas play the most important role. Further grounds for restriction such as conservation issues are brought in when respective public stakeholders are involved. On the one hand, one reason for restrictions (bird protection) became weakened and seen in a different light while, on the other hand, new reasons for restrictions (bat protection) came into play.

  47. 47.

    Replacing old turbines with new, higher capacity turbines was intended to generate a significant potential for further growth in installed wind power capacity. Potential analyses for the north German coast led to expectations of a significant increase in installed capacity (Deutsche WindGuard 2005a), even when taking into account limitations derived from siting criteria (Deutsche WindGuard 2005b).

  48. 48.

    Increasing competition between operators was partly the cause of the as yet incomplete exhaustion of appropriate areas. According to von Nicolai (2005, pers. comm.), operators, fearing a reduction in wind yield, are taking legal action against constructions planned on the windward side of existing wind farms. This would also account for unutilized areas.

  49. 49.

    Cf. Molly (2005, pers. comm.); Deutsche WindGuard GmbH (2005a).

  50. 50.

    Cf. Joint circular order of the Ministry of Building and Transport, the Ministry for the Environment and Conservation, the Ministry of Agriculture and Consumer Protection and the Ministry of Economics, Medium-sized Businesses and Energy in North-Rhine Westphalia “Grundsätze für Planung und Genehmigung von Windkraftanlagen – WEA-Erlass” of 21 October 2005.

  51. 51.

    BWE press review, 4 October 2005: “Abstandserlass für Windräder gibt falsches Signal”. Cf. (Köpke 2005b).

  52. 52.

    Cf. Motion by North-Rhine Westphalia put forward to the Bundesrat on 30 September 2005 (Bundesrats-Drs. 718/05) for changes to the Building Code. The motion was not successful.

  53. 53.

    In 1990 there was a special export subsidy for manufacturers, the “ELDORADO program”, which had the aim of making the entry of German manufacturers into the world of export easier by supporting the large-scale production of turbines.

  54. 54.

    Cf. Ender & Molly (2004); BWE 2008: Data sheet 2008 (accessed: 4 March 2009); see also press release from BWE and VDMA in January 2009: http://www.wind-energie.de/de/aktuelles/... (Accessed: 24 February 2009).

  55. 55.

    BWE (n.d.); see also http://www.wind-energie.de/de/statistiken/... (Accessed: 31 August 2009).

  56. 56.

    http://www.wind-energie.de/de/statistiken/... (Accessed: 11 February 2009).

  57. 57.

    Bündnis 90/Die Grünen, the German Green Party was founded in the late 1970s. Since 1998, Bündnis 90/Die Grünen were part of the coalition government on the national level.

  58. 58.

    Speech by Federal Minister for the Environment Jürgen Trittin on 28 January 2003 at the New Year’s reception of the associations BWE (Federal Wind Energy Association)/Fachverband Biogas/VDMA in Berlin.

  59. 59.

    Cf. http://www.erneuerbare-energien.de/inhalt/... (Accessed: 11 August 2009).

  60. 60.

    4.2 million euros were dedicated to the offshore wind power sector.

  61. 61.

    Council directive 92/43/EEC – Habitats directive; cf. Index of Legal Sources.

  62. 62.

    Council directive 79/409/EWG – Birds directive; cf. Index of Legal Sources.

  63. 63.

    For every nautical mile in excess of twelve nautical miles, the grace period increases by 0.5 months and for every additional meter of depth, it increases by 1.7 months. Cf. www.offshore-wind.de/... (Accessed: 5 February 2009).

  64. 64.

    This support encompassed solar thermal power stations, geothermal electricity generation and ecological research to accompany the development of offshore wind power, biomass and fuel cells.

  65. 65.

    The “Zukunftsinvestitionsprogramm 2001-2003” (ZIP) was financed using income generated by the auctioning-off of UMTS (Universal Mobile Telecommunication Systems) mobile licenses.

  66. 66.

    2002: erection of FINO I, near the Borkumriff; 2007: erection of FINO II in the Baltic Sea, near to Kriegers Flak; 2009: erection of FINO III 80 km west of Sylt.

  67. 67.

    The large areas of the Wadden Sea National Parks in Schleswig-Holstein and Lower Saxony as well as the Western Pomerania Lagoon Area National Park in Mecklenburg-Western Pomerania were regarded as off-limits for the utilization of wind power.

  68. 68.

    The EEZ extends seawards from coastal waters (the twelve sea-mile zone) and stretches up to a maximum of 200 sea miles from the baseline. It does not constitute part of the territory of the coastal state.

  69. 69.

    Appropriate areas in terms of the Marine Facilities Ordinance § 3a (Seeanlagenverordnung - SeeAnlV) and § 18a para. 3 ROG; the legal effect of these is not identical to that of the sites ­specified in the regional plans of the states. In terms of zoning, they have the status of priority zones and have the effect of an expert opinion when it comes to the selection of a site.

  70. 70.

    Here: especially appropriate areas for wind turbines according to § 3a of the SeeAnlV.

  71. 71.

    The Federal Office for Navigation and Hydrography (Das Bundesamt für Seeschifffahrt und Hydrographie - BSH) in Hamburg had begun to compile a zoning plan for the EEZ in 2004.

  72. 72.

    Cf. http://www.bmv.de/... (Accessed: 15 September 2009).

  73. 73.

    Cf. § 38 in conjunction with § 33 para. 2 of the BNatSchG.

  74. 74.

    The SeeAnlV was developed by the Federal Ministry of Transport, Building and Urban Development (BMVBW).

  75. 75.

    The responsibility for the construction of power lines in coastal regions remained with the states however, as did the effort involved in coordinating between the relevant decision-makers.

  76. 76.

    Cf. Dahlke (2002). For the permission process cf. Köller et al. (2006), Bruns et al. (2008) for more information.

  77. 77.

    The requirements were based on the ‘Standard research concept’ of the BSH (“Standard­untersuchungskonzept”, BSH 2002). Portman et al. (2009, 3596–3607) offer a comparison of the political and legal factors influencing offshore wind power in Germany and the USA.

  78. 78.

    Two wind farms in the Baltic have failed to be approved on nature conservation grounds.

  79. 79.

    Baltic I is around 16 km north of the Darß/Zingst peninsula and should ultimately have a total capacity of 48.3 MW. Siemens Energy and EnBW Energie Baden-Württemberg AG have signed a contract for 21 wind turbines of the type SWT 2.3–93.

  80. 80.

    http://www.alpha-ventus.de/… (Accessed: 11 August 2009).

  81. 81.

    During strong winds, the high voltage cables, particularly those in northern Germany, reach the limits of their transmission capacity. What is needed are substations which allow the use of high and extra high voltages. The growing quantity of wind power feed-ins also requires new high voltage cables in order to allow the broad distribution of wind-derived electricity to urban centers.

  82. 82.

    The issuing of permission for the laying and operation of power cables is subject to the German Federal Mining Act (Bundesberggesetz - BBergG). The responsible authority in the EEZ is the BSH, while in coastal waters, the German states are responsible.

  83. 83.

    The Act for the Acceleration of Infrastructural Planning was enacted on 27 October 2006 by the Bundestag and came into force on 16 December 2006.

  84. 84.

    However this required that the wind farms should have already started to be built by 2011.

  85. 85.

    WindForum extra. Newsletter of Energiekontor AG April 2007. www.energiekontor.de (Accessed: 1 October 2009).

  86. 86.

    The Federal Government was thereby acting in accordance with the requirements of the European Marine Strategy Framework Directive (2008/56/EG).

  87. 87.

    Coming to agreement with representatives of public opinion in the case of controversial issues such as high voltage lines is given a lot of attention, since potential legal cases which might affect the realization of such proposals can draw out or delay the process even more.

  88. 88.

    Multibrid produces wind turbines for offshore projects (M5000) in Bremerhaven. The company, which is part of the PROKON Nord group, was founded in 2000. In October 2007 the French energy company AREVA joined in. The prototype of the M5000 was put into operation onshore in April 2005. In 2006 and 2008 further turbines were erected on offshore foundations (also onshore), giving a total of four turbines which are in test operation.

  89. 89.

    The prototypes of the BARD VM, which were produced in Emden, were installed as nearshore turbines and connected to the grid in 2007 at the Rysumer Nacken. In 2008 this offshore turbine model went into serial production with 5 MW. The special offshore foundations are produced in Cuxhaven. The offshore installation of this turbine model was planned for 2009.

  90. 90.

    BARD Engineering GmbH also possesses numerous permits for offshore wind farms in the North Sea.

  91. 91.

    RWE entered the wind power market in 2007. From 2008 onward Siemens has been building wind turbines exclusively for E.ON.

  92. 92.

    A special example of this is the Bürgerwindpark Butendiek (BUTENDIEK GmbH & Co. KG, n.d.).

  93. 93.

    Cf. www.handelsblatt.com/unternehmen/... (Accessed: 11 May 2009)

  94. 94.

    Price Waterhouse Coopers: Gegenwind für Offshore-Windparks. Press release 4 December 2008. Cf. http://www.pwc.de/portal/pub/... (Accessed: 15 September 2009).

  95. 95.

    Cf. www.offshore-stiftung.de (Accessed: 11 August 2009).

  96. 96.

    In 2008, 866 new wind turbines with a capacity of 1,665 MW were installed, thereby maintaining approximately the same rate of expansion as the previous year (2007: 883 turbines, 1,667 MW). By the end of 2008, a total of 20,301 wind turbines with a combined capacity of 23,902 MW had been installed.

References

Literature

  • Allnoch, N. (1996). Zur Lage der Windkraftnutzung in Deutschland. Energiewirtschaftliche Tagesfragen, 46(10), pp. 516–519.

    Google Scholar 

  • Allnoch, N. (1998). Zur Lage der Wind- und Solarenergienutzung in Deutschland. Energiewirtschaftliche Tagesfragen, 47(10), pp. 660–666.

    Google Scholar 

  • Armbrust, S., Dörner, H., Hütter, U., Knauss, P., Molly, J. P. (1976). Nutzung der Windenergie, Teil III. Energiequellen für morgen? Nichtnukleare – Nichtfossile Primärenergiequellen. Commissioned by the Federal Ministry of Research and Technology. Frankfurt a. M.

    Google Scholar 

  • Battis, U. & Krieger, H.-J. (1982). Die bauplanungs- und bauordnungsrechtliche Zulässigkeit von Windenergieanlagen im Außenbereich. Natur und Recht (NuR), 4, pp. 137–140.

    Google Scholar 

  • Bauchmüller, M. (2006). Schneller zum Windpark. Süddeutsche Zeitung, October 26, 2006, pp. 20.

    Google Scholar 

  • Bechberger, M., Mez, L., Sohre, A. (Eds.) (2008). Windenergie im Ländervergleich. Steuerungsimpulse, Akteure und technische Entwicklungen in Deutschland, Dänemark, Spanien und Großbritannien. Frankfurt a. M.

    Google Scholar 

  • Berchem, A. (2006). Das unterschätzte Gesetz. ZEIT online, September 25, 2006. Retrieved June 07, 2009, from http://www.zeit.de/online/

  • BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (Ed.) (2001). Windenergienutzung auf See. Position paper of the Federal Environment Ministry for the expansion of offshore wind power, of June 07, 2001. Retrieved October 09, 2009, from http://www.wind-energie.de/

  • BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (Ed.) (2007). Entwicklung der Offshore-Windenergienutzung in Deutschland. Retrieved October 09, 2009, from http://www.bmu.de/erneuerbare_energien/

  • BMVBW (Bundesministerium für Verkehr, Bau- und Wohnungswesen) (2002). Ausweisung von Eignungsgebieten für Offshore-Windparks gemäß § 3a Seeanlagenverordnung (SeeAnlV). Bonn: unpublished.

    Google Scholar 

  • Breuer, W. (1996). Planungsgrundsätze für die Integration der Belange des Naturschutzes und der Landschaftspflege beim Ausbau der Windenergienutzung. NNA – Alfred Töpfer Akademie für Naturschutz (Ed.): Standortplanung von Windenergieanlagen unter Berücksichtigung von Naturschutzaspekten, NNA-Berichte Vol. 9, No. 3, pp. 39–45.

    Google Scholar 

  • Bruns, E., Köppel, J., Ohlhorst, D., Schön, S. (2008): Die Innovationsbiographie der Windenergie. Absichten und Wirkungen von Steuerungsimpulsen. Münster.

    Google Scholar 

  • BSH (Bundesamt für Seeschifffahrt und Hydrographie) (2002). Standarduntersuchungskonzept Auswirkungen von Offshore-Windenergieanlagen auf die Meeresumwelt. Basisaufnahme und Monitoring der Meeresumwelt. 2nd version, in force since February 25, 2002.

    Google Scholar 

  • BSH (Bundesamt für Seeschifffahrt und Hydrographie) (2008). Standard. Baugrunderkundungen für Offshore-Windenergieparks. 1st update. Hamburg und Rostock. Retrieved September 15, 2009, from http://www.bsh.de/de/

  • BT-Drs. 15/1862 Briefing by the Federal Government. Bericht über die Bestandsaufnahme durch die Deutsche Energie-Agentur (dena) über den Handlungsbedarf bei der Förderung des Exportes erneuerbarer Energie-Technologien, of October 31, 2003. Retrieved October 1, 2009, from http://dip21.bundestag.de/dip21/

  • BUND (Bund für Umwelt und Naturschutz Deutschland) (1996). Naturschutz und Windenergie. BUND – Landesverband Niedersachsen e.V. NNA – Alfred Töpfer Akademie für Naturschutz (Ed.): Standortplanung von Windenergieanlagen unter Berücksichtigung von Naturschutzaspekten. Position paper. Vol. 9, No. 3, pp. 8–21.

    Google Scholar 

  • BUND (Bund für Umwelt und Naturschutz Deutschland) (Ed.) (2001). Windenergie. BUND-Forderungen für einen natur- und umweltverträglichen Ausbau. Retrieved November 21, 2007, from http://www.bund.net/

  • BUND (Bund für Umwelt und Naturschutz Deutschland) (Ed.) (2004). Vögel und Fledermäuse im Konflikt mit der Windenergie. In Bremer Beiträge für Naturkunde und Naturschutz, Vol. 7. Bremen.

    Google Scholar 

  • BUTENDIEK GmbH & Co. KG (Ed.) (n.d.). 20.000 Butendieker gesucht. Beteiligungsangebot, März 2003. OSB Offshore-Bürger-Windpark. Retrieved November 10, 2008, from http://www.butendiek.de/downloads/Prospekt.pdf

  • Bundesregierung (2002). Perspektiven für Deutschland. Unsere Strategie für eine nachhaltige Entwicklung. Retrieved June 26, 2008, from http//:www.bundesregierung.de/

  • BWE (Bundesverband WindEnergie e.V.) (2005). Ausbau der Offshore-Windenergie in Deutschland – Bewertung des Status Quo und Vorschläge für eine zügige Umsetzung. Position paper. Berlin.

    Google Scholar 

  • BWE (Bundesverband WindEnergie e.V.) (2007). Position zur Novelle des Erneuerbare-Energien-Gesetzes. Opinion of the BWE, September 3, 2007. Berlin.

    Google Scholar 

  • BWE (Bundesverband WindEnergie e.V.) (2008). Die Entwicklung der Windenergie in Deutschland 2008. Erhebung des Deutschen Windenergie Institutes (DEWI) im Auftrag des Bundesverbandes WindEnergie und des VDMA. Retrieved September 15, 2009, from http://www.wind-energie.de/de/statistiken/

  • BWE (Bundesverband WindEnergie e.V.) (2009). Statistik Center. Die Entwicklung der Windenergie in Deutschland. Retrieved January 21, 2008, from http://www.wind-energie.de/de/statistiken/

  • Byzio, A., Heine, H., Mautz, R., Rosenbaum, W. (2002). Zwischen Solidarhandeln und Marktorientierung. Ökologische Innovation in selbstorganisierten Projekten – autofreies Wohnen, Car Sharing und Windenergienutzung. SOFI Soziologisches Forschungsinstitut an der Georg-August-Universität Göttingen.

    Google Scholar 

  • Byzio, A., Mautz, R., Rosenbaum, W. (2005). Energiewende auf schwerer See? Konflikte um die Offshore-Windkraftnutzung. München: oekom-verlag.

    Google Scholar 

  • COM (European Commission) (2003). Zweiter Benchmarkingbericht über die Vollendung des Elektrizitäts- und Erdgasbinnenmarktes (aktualisierter Bericht unter Einbezug der Beitrittsländer) vom 07.04.2003. SEK/2002/1038. Brüssel.

    Google Scholar 

  • Dahlke, C. (2002). Genehmigungsverfahren von Offshore-Windenergieanlagen nach der Seeanlagenverordnung. Natur und Recht (NuR), 8, pp. 472–479.

    Google Scholar 

  • Dattke, V. & Sperber, H. H. (1994). Windkraftanlagen und Landschaftsbild. Naturschutz und Landschaftsplanung, 26(5), pp. 179–184.

    Google Scholar 

  • dena (Deutsche Energie-Agentur) (2005). Zusammenfassung der wesentlichen Ergebnisse der Studie “Energiewirtschaftliche Planung für die Netzintegration von Windenergie in Deutschland an Land und Offshore bis zum Jahr 2020” (dena-Netzstudie) durch die Projektsteuerungsgruppe. Retrieved November 03, 2008, from http://www.offshore-wind.de/

  • Deutsche WindGuard GmbH (2005a). Potenzialanalyse “Repowering in Deutschland”. Commissioned by the WAB Windenergieagentur Bremerhaven Bremen e.V. Bremerhaven.

    Google Scholar 

  • Deutsche WindGuard GmbH (2005b). Auswirkungen neuer Abstandsempfehlungen auf das Potenzial des Repowering am Beispiel ausgesuchter Landkreise und Gemeinden. Varel.

    Google Scholar 

  • Edler, D., Blazejczak, J., Nathani, C. (2004). Aktualisierung der Beschäftigtenzahlen im Umweltschutz für das Jahr 2002. Expert opinion, commissioned by the Federal Agency for the Environment.. DIW – Deutsches Institut für Wirtschaftsforschung. Berlin.

    Google Scholar 

  • Ender, C. & Molly, J. P. (2004). Versuch der Ermittlung deutscher Wertschöpfung im weltweiten Windenergiemarkt. DEWI Magazin, 25, pp. 31–32.

    Google Scholar 

  • Fritsche, A. (2003). Repowering von Windkraftstandorten. Perspektiven für eine naturschutzverträgliche Nutzung der Windenergie im Küstenraum. Diploma thesis at the Department of Landscape Architecture and Environmental Planning of the Technische Universität Berlin.

    Google Scholar 

  • Gasch, R. & Twele, J. (Eds.) (2005). Windkraftanlagen. Grundlagen, Entwurf, Planung und Betrieb. 4th edition. Wiesbaden.

    Google Scholar 

  • Haack, W. (2005). Das Stromnetz – der Flaschenhals des neuen Energiezeitalters. Stadt und Gemeinde, No. 1–2, p. Retrieved September 15, 2009, from http://www.nsgb.info/

  • Hasse, J. & Schwahn, C. (1992). Windenergie und Ästhetik der Landschaft. Ästhetische Landschaftsverträglichkeit von Windenergieanlagen und Windenergieparks (Beispiel Wesermarsch). Export opinion (Part I commissioned by the municipality Wesermarsch). Bunderhee and Göttingen.

    Google Scholar 

  • Hau, E. (1996). Windkraftanlagen. Berlin.

    Google Scholar 

  • Hau, E. (2003). Windkraftanlagen: Grundlagen, Technik, Einsatz. Berlin: Wirtschaftlichkeit.

    Google Scholar 

  • Heier, S. (1997). Anschluss von Windkraftanlagen an das öffentliche Netz. BWE – Bundesverband Windenergie e.V. In Windkraftanlagen 1997 – Marktübersicht. Osnabrück. pp. 95–100.

    Google Scholar 

  • Hemmelskamp, J. (1998). Innovationswirkungen der Umwelt- und Technologiepolitik im Windenergiebereich – ein internationaler Vergleich. Study of ZEW within the research project “Innovative Wirkungen umweltpolitischer Instrumente” (FIU) by the Bundesministeriums für Bildung, Forschung und Technologie (printed manuscript). Mannheim.

    Google Scholar 

  • Hemmelskamp, J., & Jörg, S. (1999). Innovationswirkungen der Umweltpolitik im Windenergiebereich. Klemmer, P. (Ed.): Innovationen und Umwelt. Innovative Wirkungen umweltpolitischer Instrumente. Fallstudien zum Anpassungsverhalten in Wirtschaft und Gesellschaft, Vol. 3, Berlin, pp. 81–112.

    Google Scholar 

  • Heymann, M. (1995). Die Geschichte der Windenergienutzung: 1890–1990. Frankfurt a.M.

    Google Scholar 

  • Hoppe-Kilpper, M. (2003). Entwicklung der Windenergietechnik in Deutschland und der Einfluss staatlicher Förderpolitik. Technikentwicklung in den 1990er Jahren zwischen Markt und Forschungsförderung. Dissertation. Kassel.

    Google Scholar 

  • Hoppe-Kilpper, M., Durstewitz, M., Kleinkauf, W., Stump, N., Windheim, R. (1997). Stand und Perspektiven der Windenergienutzung in Deutschland – Ergebnisse aus dem Wissenschaftlichen Meß- und Evaluierungsprogramm. Forschungsverbund Sonnenenergie, Themen 1996/97, pp. 141–145.

    Google Scholar 

  • Hötker, H., Thomsen, K.-M., Köster, H. (2004). Auswirkungen regenerativer Energiegewinnung auf die biologische Vielfalt am Beispiel der Vögel und der Fledermäuse – Fakten, Wissenslücken, Anforderungen an die Forschung, ornithologische Kriterien zum Ausbau von regenerativen Energiegewinnungsformen. Supported by the Federal Agency of Nature Conservation, commissioned by NABU. Retrieved June 22, 2005, from http://www.download-bibliothek.de/

  • ISET (Institut für Solare Energieversorgungstechnik) (Ed.) (2006). Windenergie in Deutschland von der Vision zur Realität. Ausgewählte Ergebnisse aus dem wissenschaftlichen Begleitprogramm WMEP zum Breitentest “250 MW Wind”. Kassel.

    Google Scholar 

  • ISUSI (Institute for Sustainable Solutions and Innovations) (2005). Analyse der Vor- und Nachteile verschiedener Modelle zur Förderung des Ausbaus von Offshore-Windenergie in Deutschland. Final report. Retrieved March 15, 2008, from http://www.bmu.de/erneuerbare_energien/downloads/

  • Jarras, L. & Voigt, W. (2009). Neuer EEG-Ausgleichsmechanismus kann den Ausbau der erneuerbaren Energien gefährden! Energiewirtschaftliche Tagesfragen, 59(10), pp. 26–29.

    Google Scholar 

  • Kleinschmidt, V., Schauerte-Lüke, N., Bergmann, R. (1994). Rahmenkonzept für Windkraftanlagen und -parks im Binnenland. Natur und Landschaft, Vol. 69, No. 1, pp. 9–18

    Google Scholar 

  • Klöppel, D. & Krause, C. L. (1996). Windkraftparks in der Erholungslandschaft. Standortprobleme unter dem Aspekt von Landschaftsbild und Erholungsqualität. Naturschutz und Freizeitgesellschaft, Band 2. Sankt Augustin.

    Google Scholar 

  • Köller, J. Köppel, J., Peters, W. (Eds.) (2006). Offshore Wind Energy – Research on Environmental Impacts. Heidelberg.

    Google Scholar 

  • Köpke, R. (2004). Repowering im Kriechgang. Neue Energie, No. 4. Retrieved April 5, 2007, from http://www.neueenergie.net/index.php?id=710

  • Köpke, R. (2005a). Repowering vorerst ohne Impulse. Energie and Management, 6, pp. 12.

    Google Scholar 

  • Köpke, R. (2005b). Klein, aber nicht chancenlos. Energie and Management, April 15, 2005, pp. 16.

    Google Scholar 

  • Köppel, J., Bruns, E., Langenheld, A., Peters, W., Wende, W., Kraetzschmer, D. (2002). Umweltverträglichkeitsprüfung (UVP), FFH-Verträglichkeitsprüfung und Strategische Umweltprüfung (SUP) für Offshore Windparks in der Ausschließlichen Wirtschaftszone (AWZ) der deutschen Nord- und Ostsee. Ökologische Begleitforschung zur Offshore-Windenergienutzung. Expert Conference of the BMU and PTJ – Projektträger Jülich. Bremerhaven May 28–29, 2002. Conference proceedings. Published by PTJ.

    Google Scholar 

  • Kruppa, I. (2007). Steuerung der Offshore-Windenergienutzung vor dem Hintergrund der Umweltziele Klima- und Meeresumweltschutz. Dissertation at the Faculty VI – Planen Bauen Umwelt of Technische Universität Berlin.

    Google Scholar 

  • Kuxenko, M. (2003). Der Gesetzeszweck einer umweltverträglichen Energieversorgung im Planfeststellungsverfahren für Energieleitungen. Natur und Recht (NuR), 6, pp. 332–339.

    Google Scholar 

  • LT-Drs. 15/1615 (December 3, 2003). Recommendation of the Environment Committee to the Landtag of Lower Saxony.

    Google Scholar 

  • Maslaton, M. & Kupke, D. (2005). Rechtliche Rahmenbedingungen des Repowerings von Windenergieanlagen. Leipzig: Verlag für alternatives Energierecht.

    Google Scholar 

  • Mautz, R. & Byzio, A. (2004). Der Einstieg in die Offshore-Windkraftnutzung als Prüfstein der Energiewende – Konfliktthemen und Konfliktdynamiken. SOFI-Mitteilungen, 32, pp. 111–127.

    Google Scholar 

  • Mautz, R. & Byzio, A. (2005). Die soziale Dynamik der regenerativen Energien – am Beispiel der Fotovoltaik, der Biogasverstromung und der Windenergie. DFG project RO 465/8-1: Soziale Dynamik der Energiewende. Interim report. SOFI Göttingen (Ed.). Retrieved May 29, 2008, from http://www.sofi-goettingen.de/

  • Molly, J. P. (2009). Status der Windenergienutzung in Deutschland – Updated June 30, 2009. DEWI GmbH. Retrieved September 9, 2009, from http://www.wind-energie.de/

  • Molly, J. P., Schott, T., Schmidt-Küster, W. -J., Tegen, W. (1988). Perspektiven der Windenergienutzung in der Bundesrepublik Deutschland. Strategiestudie. Published by the Fördergesellschaft Windenergie e.V. Kiel.

    Google Scholar 

  • Monstadt, J. (2004). Die Modernisierung der Stromversorgung. Regionale Energie- und Klimapolitik im Liberalisierungs- und Privatisierungsprozess. Dissertation. Wiesbaden: VS-Verlag.

    Google Scholar 

  • Nagel, B. (2001). Ökostrom darf durch Mindestpreise gefördert werden – Zur Entscheidung des EuGH in Sachen Preußen-Elektra AG/Schleswag AG. Zeitschrift für Umweltrecht (ZUR), 4, 263–265.

    Google Scholar 

  • Neumann, T. (2001). Weiterer Ausbau der Windenergienutzung im Hinblick auf den Klimaschutz. DEWI Magazin, 19, pp. 7–13.

    Google Scholar 

  • Neumann, T., Ender, C., Molly, J. -P. u. a. (2002). Weiterer Ausbau der Windenergienutzung im Hinblick auf den Klimaschutz, Teil 1 und 2. R&D project No. 99946101 commissioned by the BMU. Deutsches Windenergie-Institut. Retrieved August 14, 2009, from http://www.bmu.de/erneuerbare/energien/doc/6889.php

  • Nitsch, J. (2008). Leitstudie 2008 – Weiterentwicklung der “Ausbaustrategie Erneuerbare Energien” vor dem Hintergrund der aktuellen Klimaschutzziele Deutschlands und Europas. Summary. Commissioned by the German Federal Ministry of the Environment. Retrieved July 15, 2009, from http://www.bmu.de/files/

  • Nohl, W. (1993). Beeinträchtigungen des Landschaftsbildes durch mastenartige Eingriffe. Materialien für die naturschutzfachliche Bewertung und Kompensationsermittlung. Expert opinion commissioned by the MURL Nordrhein-Westfalen. Werkstatt für Landschafts- und Freiraumentwicklung. Kirchheim b. München.

    Google Scholar 

  • Ohlhorst, D. (2009). Windenergie in Deutschland. Konstellationen, Dynamiken und Reguli­erungspotenziale. Dissertation. Wiesbaden: VS-Verlag

    Google Scholar 

  • Ohlhorst, D., Bruns, E., Schön, S., Köppel, J. (2008). Windenergienutzung in Deutschland – eine Erfolgsstory. In M. Bechberger, L. Mez, A. Sohre (Eds.), Windenergie im Ländervergleich. Steuerungsimpulse, Akteure und technische Entwicklung in Deutschland, Dänemark, Spanien und Großbritannien. Berlin: Peter Lang Verlag.

    Google Scholar 

  • Portman, M. E., Duff, J. A., Köppel, J., Reisert, J., Higgins, M. E. (2009). Offshore wind power development in the exclusive economic zone: Legal and policy supports and impediments in Germany and the US. Energy Policy, 37(9), pp. 3596–3607.

    Google Scholar 

  • Püstow, K. (2005). Perspektiven der Windenergienutzung in Schleswig-Holstein. Lecture on the HusumWind fare“ on September 22, 2005.

    Google Scholar 

  • Ramesohl, S., Kristof, K., Fischedick, M., Thomas, S., Irrek, W. (2002). Die technische Entwicklung auf den Strom- und Gasmärkten. Eine Kurzanalyse der Rolle und Entwicklungsperspektiven neuer dezentraler Energietechnologien und der Wechselwirkungen zwischen technischem Fortschritt und den Akteursstrukturen in den Strom- und Gasmärkten. Brief expert opinion for the Monopolkommission. Wuppertal Institute for Climate, Environment and Energy. April 2002. Wuppertal.

    Google Scholar 

  • Rave, K. (1992). Windenergie in Schleswig-Holstein. In G. Altner, H. Leitschuh, G. Michelsen, U. E. Simonis, E. U. von Weizsäcker (Eds.), Jahrbuch Ökologie. München, pp. 352–356

    Google Scholar 

  • Rehfeld, K., Gerdes, G., Schreiber, M. (2001). Weiterer Ausbau der Windenergienutzung im Hinblick auf den Klimaschutz – Teil 1, R&D project No. 99946101 commissioned by the BMU. 3rd interim report, April 2001. Deutsches Windenergie-Institut (DEWI). Retrieved September 15, 2009, from http://www.bmu.de/erneuerbare/energien/doc/6889.php

  • Reichenbach, M. (2004). Nur die Einzelfall-Betrachtung hilft weiter. Auswirkungen von Windenergieanlagen auf Vögel – was wissen wir heute? Erneuerbare Energien, 3, pp. 32–34.

    Google Scholar 

  • Reshöft, J. & Sellmann, Ch. (2009). Die Novelle des EEG – Neue Wege auf bewährten Pfaden (Teil 1). Energiewirtschaftliche Tagesfragen, 59(3), pp. 139–145.

    Google Scholar 

  • Rohwer, B. (2004). Die Zukunft der Windenergie in Schleswig-Holstein. Speech on January 29, 2004 in Schleswig.

    Google Scholar 

  • Saretzki, T. (2001). Energiepolitik in der Bundesrepublik Deutschland 1949–1999. Ein Politikfeld zwischen Wirtschafts-, Technologie- und Umweltpolitik. Willems U. (Eds.): Demokratie und Politik in der Bundesrepublik Deutschland 1949–1999 (pp. 195–221). Opladen: Leske + Budrich.

    Google Scholar 

  • Schlaich, J., Bergermann, R., Seidel, J., Weischede, D., Friedrich, K., Schiel, W. (1989). Aufwindkraftwerke – Technische Auslegung, Betriebserfahrung und Entwicklungspotential. Stuttgart.

    Google Scholar 

  • Schlegel, S. (2005). Innovationsbiographie Windenergie. Eine Analyse des deutschen Windenergiebooms seit 1990. Diploma thesis at the Department of Landscape Architecture and Environmental Planning of the Technische Universität Berlin.

    Google Scholar 

  • SPD/Bündnis90/Die GRÜNEN (1998). Aufbruch und Erneuerung – Deutschlands Weg ins 21. Jahrhundert. Coalition agreement between the Social Democratic Party of Germany and Alliance90/The Greens of October 29, 1998. Bonn.

    Google Scholar 

  • Sprötge, M., Sinnig, F., Reichenbach, M. (2004). Zum naturschutzfachlichen Umgang mit Vögeln und Fledermäusen in der Windenergieplanung. BUND (Ed.): Vögel und Fledermäuse im Konflikt mit der (pp. 281–290) Windenergie. Bremen.

    Google Scholar 

  • SRU (Sachverständigenrat für Umweltfragen) (2009). Weichenstellungen für eine nachhaltige Stromversorgung. Summary by the German Advisory Council on the Environment. Berlin.

    Google Scholar 

  • Staiß, F. (2003). Jahrbuch erneuerbare Energien 2002/2003. Radebeul: Bieberstein Verlag.

    Google Scholar 

  • Stier, B. (1999). Staat und Strom: die politische Steuerung des Elektrizitätssystems in Deutschland 1890–1950. Ubstadt-Weiher: Verlag Regionalkultur.

    Google Scholar 

  • Tacke, F. (2004). Windenergie – Die Herausforderung. Gestern, Heute, Morgen. Frankfurt a. Main: VDMA Verlag.

    Google Scholar 

  • Twele, J. (2005). Innovationsbiographie der Windenergie aus technisch-ökonomischer Sicht. Unpublished manuscript within the research project Die Innovationsbiographie der Windenergie. Berlin.

    Google Scholar 

  • Voigt, W. (2006). Windenergie in Schleswig-Holstein – eine Erfolgsgeschichte. In G. Altner, H. Leitschuh, G. Michelsen, U. E. Simonis, E. U. von Weizsäcker (Eds.), Jahrbuch Ökologie 2007. München.

    Google Scholar 

  • Waldermann, A. (2007). Ökobranche begräbt Hoffnung auf Meeres-Windparks. Spiegel online. Retrieved May 1, 2007, from http://www.spiegel.de/wirtschaft/

  • Weinhold, N. (2008). Von Alltagsriesen und Traumgiganten. neue energie, No. 4, p. 30. Retrieved October 1, 2009, from http://www.neueenergie.net/

  • Weinhold, N. (2009). Blaue Stunde. neue energie, No. 2, 50–55. Retrieved October 1, 2009, from http://www.neueenergie.net/

  • Welke, M. & Nick-Leptin, J. (2005). Bei der Windenergieforschung liegt Offshore vorn. DEWI Magazin, 27, pp. 5–9.

    Google Scholar 

  • Wolf, M. (2003). Wirtschaftsfaktor Offshore-Windenergie. Parliamentary State Secretary. Speech on April 16, 2003 in the permanent representation of Saxony-Anhalt. Retrieved August 11, 2009, form https://www.bmu.de/reden/

  • Wustlich, G. (2007). Das Recht der Windenergie im Wandel – Teil 1: Windenergie an Land. Zeitschrift für Umweltrecht (ZUR), 1, pp. 16–24.

    Google Scholar 

  • Zucco, C. & Merck, T. (2004). Ökologische Effekte von Offshore-Windkraftanlagen. Eine Übersicht zur aktuellen Kenntnislage. Updated in March 2004. Naturschutz und Land­schaftsplanung, Vol. 36, No. 9, pp. 261–269.

    Google Scholar 

  • ZSW, Zentrum für Sonnenenergie und Wasserstoff-Forschung Baden-Württemberg/DIW, Deutsches Institut für Wirtschaftsforschung/DLR, Deutsches Zentrum für Luft- und Raumfahrt/GWS, Gesellschaft für wirtschaftliche Strukturforschung, Osnabrück (2006). Auswirkungen des Ausbaus der erneuerbaren Energien auf den deutschen Arbeitsmarkt unter besonderer Berücksichtigung des Außenhandels – Summary. Commissioned by the German Federal Ministry of the Environment. Retrieved September 15, 2009, from http://www.erneuerbare-energien.de/

  • Zuccho, C., Wende, W., Merck, T., Köchling, I., Köppel, J. (Eds.) (2006). Ecological Research on Offshore Wind Farms: International Exchange of Experiences. Part A: Assessment of Ecological Impacts. Bonn.

    Google Scholar 

Interviews

  • Ahmels (2009, pers. comm.). Personal comment of Peter Ahmels during the workshop “Die Steuerung von Innovationsprozessen – Ergebnisse der Analyse von Innovationsbiographien ausgewählter EE-Technologien zur Stromerzeugung”, on March 25, 2009.

    Google Scholar 

  • Kaiser (2007, pers. comm.). Interview with Reinhard Kaiser, Director of the department Kl III Erneuerbare Energien, on October 09, 2007.

    Google Scholar 

  • Kegel (2005, pers. comm.). Interview with Ulrich Kegel former head of department of regional planning at “Zweckverband Großraum Braunschweig”, on September 16, 2005.

    Google Scholar 

  • Lönker (2006, pers. comm.). Interview with Oliver Lönker Editor at the journal neue energie. Das Magazin für Erneuerbare Energien, on March 9, 2006.

    Google Scholar 

  • Molly (2005, pers. comm.). Interview with Jens Peter Molly, head of the German Wind Energy Institute (DEWI), on October 11, 2005.

    Google Scholar 

  • v. Nicolai (2005, pers. comm.). Interview with H. von Nicolai, head of the department “Spatial Planning and Land Use Planning” in the Ministry of Labour, Building and Spatial Planning of Mecklenburg-West Pomerania, on September 28, 2005.

    Google Scholar 

  • Schiel (2005, pers. comm.). Interview with Johannes Schiel, staff member of the German Engineering Federation (VDMA), on September 6, 2005.

    Google Scholar 

  • Twele (2005, pers. comm.). Communication and comments within a project cooperation on the innovation biography of wind energy.

    Google Scholar 

  • Vahrenholt (2005, pers. comm.). Interview with Dr. Fritz Vahrenholt, former director of Repower-Systems, on September 2, 2005.

    Google Scholar 

  • Voigt (2005, pers. comm.). Interview with Wilfried Voigt, former State secretary at the Environment Ministry of the German state of Schleswig-Holstein, on September 22, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Bruns .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bruns, E., Ohlhorst, D., Wenzel, B., Köppel, J. (2011). Innovation Framework for Generating Electricity from Wind Power. In: Renewable Energies in Germany’s Electricity Market. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9905-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9905-1_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9904-4

  • Online ISBN: 978-90-481-9905-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics