Skip to main content

Future Directions

  • Chapter
  • First Online:
Climate Time Series Analysis

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 42))

  • 2572 Accesses

Abstract

What changes may bring the future to climate time series analysis? First we outline (Sections 9.1, 9.2 and 9.3) more short-term objectives of “normal science” (Kuhn 1970), extensions of previous material (Chapters 1, 2, 3, 4, 5, 6, 7 and 8). Then we take a chance (Sections 9.4 and 9.5) and look on paradigm changes in climate data analysis that may be effected by virtue of strongly increased computing power (and storage capacity). Whether this technological achievement comes in the form of grid computing (Allen 1999; Allen et al. 2000; Stainforth et al. 2007) or quantum computing (Nielsen and Chuang 2000; DiCarlo 2009; Lanyon et al. 2009)—the assumption here is the availability of machines that are faster by a factor of ten to the power of, say, twelve, by a mid-term period of, say, less than a few decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen M (1999) Do-it-yourself climate prediction. Nature 401(6754): 642.

    Article  Google Scholar 

  • Allen MR, Stott PA, Mitchell JFB, Schnur R, Delworth TL (2000) Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature 407(6804): 617–620.

    Article  CAS  Google Scholar 

  • Berkowitz J, Kilian L (2000) Recent developments in bootstrapping time series. Econometric Reviews 19(1): 1–48.

    Article  Google Scholar 

  • Buck CE, Millard AR (Eds) (2004) Tools for Constructing Chronologies: Crossing Disciplinary Boundaries. Springer, London, 257 pp.

    Google Scholar 

  • Candolo C, Davison AC, Demétrio CGB (2003) A note on model uncertainty in linear regression. The Statistician 52(2): 165–177.

    Google Scholar 

  • Chatfield C (1995) Model uncertainty, data mining and statistical inference (with discussion). Journal of the Royal Statistical Society, Series A 158(3): 419–466.

    Article  Google Scholar 

  • Chatfield C (2004) The Analysis of Time Series: An Introduction. Sixth edition. Chapman and Hall, Boca Raton, FL, 333 pp.

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 847–940.

    Google Scholar 

  • Draper D (1995) Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society, Series B 57(1): 45–97.

    Google Scholar 

  • Goodess CM, Jacob D, Déqué M, Guttiérrez JM, Huth R, Kendon E, Leckebusch GC, Lorenz P, Pavan V (2009) Downscaling methods, data and tools for input to impacts assessments. In: van der Linden P, Mitchell JFB (Eds) ENSEMBLES: Climate change and its impacts at seasonal, decadal and centennial timescales. Met Office Hadley Centre, Exeter, pp 59–78.

    Google Scholar 

  • Hargreaves JC, Annan JD (2002) Assimilation of paleo-data in a simple Earth system model. Climate Dynamics 19(5–6): 371–381.

    Google Scholar 

  • Jun M, Knutti R, Nychka DW (2008) Spatial analysis to quantify numerical model bias and dependence: How many climate models are there? Journal of the American Statistical Association 103(483): 934–947.

    Article  CAS  Google Scholar 

  • Kuhn TS (1970) The Structure of Scientific Revolutions. Second edition. University of Chicago Press, Chicago, 210 pp.

    Google Scholar 

  • Lanyon BP, Barbieri M, Almeida MP, Jennewein T, Ralph TC, Resch KJ, Pryde GJ, O’Brien JL, Gilchrist A, White AG (2009) Simplifying quantum logic using higher-dimensional Hilbert spaces. Nature Physics 5(2): 134–140.

    Article  CAS  Google Scholar 

  • Leith NA, Chandler RE (2010) A framework for interpreting climate model outputs. Applied Statistics 59(2): 279–296.

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 747–845.

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282): 747–756.

    Article  CAS  Google Scholar 

  • Nielsen MA, Chuang IL (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 676 pp.

    Google Scholar 

  • Parrenin F, Barnola J-M, Beer J, Blunier T, Castellano E, Chappellaz J, Dreyfus G, Fischer H, Fujita S, Jouzel J, Kawamura K, Lemieux-Dudon B, Loulergue L, Masson-Delmotte V, Narcisi B, Petit J-R, Raisbeck G, Raynaud D, Ruth U, Schwander J, Severi M, Spahni R, Steffensen JP, Svensson A, Udisti R, Waelbroeck C, Wolff E (2007) The EDC3 chronology for the EPICA Dome C ice core. Climate of the Past 3(3): 485–497.

    Article  Google Scholar 

  • Paul A, Schäfer-Neth C (2005) How to combine sparse proxy data and coupled climate models. Quaternary Science Reviews 24(7–9): 1095–1107.

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 589–662.

    Google Scholar 

  • Smith RL, Tebaldi C, Nychka D, Mearns LO (2009) Bayesian modeling of uncertainty in ensembles of climate models. Journal of the American Statistical Association 104(485): 97–116.

    Article  CAS  Google Scholar 

  • Stainforth DA, Allen MR, Tredger ER, Smith LA (2007) Confidence, uncertainty and decision-support relevance in climate predictions. Philosophical Transactions of the Royal Society of London, Series A 365(1857): 2145–2161.

    Article  CAS  Google Scholar 

  • Stensrud DJ (2007) Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge, 459 pp.

    Book  Google Scholar 

  • Tebaldi C, Sansó B (2009) Joint projections of temperature and precipitation change from multiple climate models: A hierarchical Bayesian approach. Journal of the Royal Statistical Society, Series A 172(1): 83–106.

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (Eds) (2009) ENSEMBLES: Climate change and its impacts at seasonal, decadal and centennial timescales. Met Office Hadley Centre, Exeter, 160 pp.

    Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical Analysis in Climate Research. Cambridge University Press, Cambridge, 484 pp.

    Google Scholar 

  • Wunsch C (2006) Discrete Inverse and State Estimation Problems. Cambridge University Press, Cambridge, 371 pp.

    Book  Google Scholar 

  • DiCarlo L, Chow JM, Gambetta JM, Bishop LS, Johnson BR, Schuster DI, Majer J, Blais A, Frunzio L, Girvin SM, Schoelkopf RJ (2009) Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460(7252): 240–244.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Mudelsee .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mudelsee, M. (2010). Future Directions. In: Climate Time Series Analysis. Atmospheric and Oceanographic Sciences Library, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9482-7_9

Download citation

Publish with us

Policies and ethics