Skip to main content

Actin-based Motile Processes in Tumor Cell Invasion

  • Chapter
  • First Online:
Actin-based Motility

Abstract

Tumor cell invasion and metastasis is a multi-step process where tumor cells escape from the primary tumor and seed at distant sites in the body. The invasion of tumor cells through the surrounding extracellular matrix (ECM) and intravasation through the endothelium to enter the bloodstream requires several highly regulated actin-based motile processes including: 1. Chemotaxis 2. Formation of invasive protrusions 3. Active cell migration, and 4. Active focal degradation of the ECM. The invasive tumor cell generates highly specialized actin-based invasive protrusions known as lamellipodia to initiate active cell migration and invadopodia to actively degrade through dense areas of ECM. The formation of both lamellipodia and invadopodia requires precise control of the activities of several proteins that function to regulate the actin cytoskeleton including: cortactin, cofilin, the Arp2/3 complex, diaphanous-related formins (DRFs), and myosin. In this chapter, we will discuss the molecular mechanisms that are known to control the actin cytoskeleton during the formation and maturation of both lamellipodia and invadopodia, and the contribution of these actin-based motile processes to the invasive tumor cell phenotype during metastasis in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

extracellular matrix

MMP:

matrix metalloproteinase

DRF:

diaphanous-related formins

EGF:

epidermal growth factor

References

  • Abram, C. L., D. F. Seals, et al. (2003). “The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells.” J Biol Chem 278(19): 16844–51.

    Article  PubMed  CAS  Google Scholar 

  • Albiges-Rizo, C., O. Destaing, et al. (2009). “Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions.” J Cell Sci 122(Pt 17): 3037–49.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, N. R., K. M. Branch, et al. (2008). “Extracellular matrix rigidity promotes invadopodia activity.” Curr Biol 18(17): 1295–9.

    Article  PubMed  CAS  Google Scholar 

  • Ammer, A. G. and S. A. Weed (2008). “Cortactin branches out: roles in regulating protrusive actin dynamics.” Cell Motil Cytoskeleton 65(9): 687–707.

    Article  PubMed  CAS  Google Scholar 

  • Arber, S., F. A. Barbayannis, et al. (1998). “Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase.” Nature 393(6687): 805–9.

    Article  PubMed  CAS  Google Scholar 

  • Artym, V. V., K. M. Yamada, et al. (2009). “ECM degradation assays for analyzing local cell invasion.” Methods Mol Biol 522: 211–9.

    Article  PubMed  CAS  Google Scholar 

  • Artym, V. V., Y. Zhang, et al. (2006). “Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function.” Cancer Res 66(6): 3034–43.

    Article  PubMed  CAS  Google Scholar 

  • Ayala, I., M. Baldassarre, et al. (2008). “Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation.” J Cell Sci 121(Pt 3): 369–78.

    Article  PubMed  CAS  Google Scholar 

  • Ayala, I., G. Giacchetti, et al. (2009). “Faciogenital dysplasia protein Fgd1 regulates invadopodia biogenesis and extracellular matrix degradation and is up-regulated in prostate and breast cancer.” Cancer Res 69(3): 747–52.

    Article  PubMed  CAS  Google Scholar 

  • Bailly, M., L. Yan, et al. (1998). “Regulation of protrusion shape and adhesion to the substratum during chemotactic responses of mammalian carcinoma cells.” Exp Cell Res 241(2): 285–99.

    Article  PubMed  CAS  Google Scholar 

  • Baldassarre, M., A. Pompeo, et al. (2003). “Dynamin participates in focal extracellular matrix degradation by invasive cells.” Mol Biol Cell 14(3): 1074–84.

    Article  PubMed  CAS  Google Scholar 

  • Bamburg, J. R. and O. P. Wiggan (2002). “ADF/cofilin and actin dynamics in disease.” Trends Cell Biol 12(12): 598–605.

    Article  PubMed  CAS  Google Scholar 

  • Betapudi, V., L. S. Licate, et al. (2006). “Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration.” Cancer Res 66(9): 4725–33.

    Article  PubMed  CAS  Google Scholar 

  • Blouw, B., et al. (2008). “A role for the podosome/invadopodia scaffold protein Tks5 in tumor growth in vivo.” Eur J Cell Biol 87(8–9): 555–67.

    Article  PubMed  CAS  Google Scholar 

  • Bowden, E. T., E. Onikoyi, et al. (2006). “Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells.” Exp Cell Res 312(8): 1240–53.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, S. N., G. A. Michaud, et al. (2007). “A critical role for cortactin phosphorylation by Abl-family kinases in PDGF-induced dorsal-wave formation.” Curr Biol 17(5): 445–51.

    Article  PubMed  CAS  Google Scholar 

  • Bryce, N. S., E. S. Clark, et al. (2005). “Cortactin promotes cell motility by enhancing lamellipodial persistence.” Curr Biol 15(14): 1276–85.

    Article  PubMed  CAS  Google Scholar 

  • Buccione, R., G. Caldieri, et al. (2009). “Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix.” Cancer Metastasis Rev 28(1–2): 137–49.

    Article  PubMed  Google Scholar 

  • Caldieri, G., I. Ayala, et al. (2009). “Cell and molecular biology of invadopodia.” Int Rev Cell Mol Biol 275: 1–34.

    Article  PubMed  CAS  Google Scholar 

  • Cardone, R. A., V. Casavola, et al. (2005). “The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis.” Nat Rev Cancer 5(10): 786–95.

    Article  PubMed  CAS  Google Scholar 

  • Carlier, M. F., V. Laurent, et al. (1997). “Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility.” J Cell Biol 136(6): 1307–22.

    Article  PubMed  CAS  Google Scholar 

  • Carman, C. V., P. T. Sage, et al. (2007). “Transcellular diapedesis is initiated by invasive podosomes.” Immunity 26(6): 784–97.

    Article  PubMed  CAS  Google Scholar 

  • Carramusa, L., C. Ballestrem, et al. (2007). “Mammalian diaphanous-related formin Dia1 controls the organization of E-cadherin-mediated cell-cell junctions.” J Cell Sci 120(Pt 21): 3870–82.

    Article  PubMed  CAS  Google Scholar 

  • Chan, A. Y., M. Bailly, et al. (2000). “Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion.” J Cell Biol 148(3): 531–42.

    Article  PubMed  CAS  Google Scholar 

  • Chan, K. T., C. L. Cortesio, et al. (2009). “FAK alters invadopodia and focal adhesion composition and dynamics to regulate breast cancer invasion.” J Cell Biol 185(2): 357–70.

    Article  PubMed  CAS  Google Scholar 

  • Chuma, M., et al. (2004). “Overexpression of cortactin is involved in motility and metastasis of hepatocellular carcinoma.” J Hepatol 41(4): 629–36.

    Article  PubMed  CAS  Google Scholar 

  • Clark, E. S. and A. M. Weaver (2008). “A new role for cortactin in invadopodia: regulation of protease secretion.” Eur J Cell Biol 87(8–9): 581–90.

    Article  PubMed  CAS  Google Scholar 

  • Clark, E. S., A. S. Whigham, et al. (2007). “Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia.” Cancer Res 67(9): 4227–35.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, M. L., E. A. Sahai, et al. (2001). “Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I.” Nat Cell Biol 3(4): 339–45.

    Article  PubMed  CAS  Google Scholar 

  • Condeelis, J., J. Jones, et al. (1992). “Chemotaxis of metastatic tumor cells: clues to mechanisms from the Dictyostelium paradigm.” Cancer Metastasis Rev 11(1): 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Condeelis, J. and J. E. Segall (2003). “Intravital imaging of cell movement in tumours.” Nat Rev Cancer 3(12): 921–30.

    Article  PubMed  CAS  Google Scholar 

  • Condeelis, J. S., J. B. Wyckoff, et al. (2001). “Lamellipodia in invasion.” Semin Cancer Biol 11(2): 119–28.

    Article  PubMed  CAS  Google Scholar 

  • Copeland, S. J., B. J. Green, et al. (2007). “The diaphanous inhibitory domain/diaphanous autoregulatory domain interaction is able to mediate heterodimerization between mDia1 and mDia2.” J Biol Chem 282(41): 30120–30.

    Article  PubMed  CAS  Google Scholar 

  • Cortesio, C. L., K. T. Chan, et al. (2008). “Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion.” J Cell Biol 180(5): 957–71.

    Article  PubMed  CAS  Google Scholar 

  • Crimaldi, L., S. A. Courtneidge, et al. (2009). “Tks5 recruits AFAP-110, p190RhoGAP, and cortactin for podosome formation.” Exp Cell Res 315(15): 2581–92.

    Article  PubMed  CAS  Google Scholar 

  • Croft, D. R., E. Sahai, et al. (2004). “Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis.” Cancer Res 64(24): 8994–9001.

    Article  PubMed  CAS  Google Scholar 

  • Deryugina, E. I., B. Ratnikov, et al. (2001). “MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells.” Exp Cell Res 263(2): 209–23.

    Article  PubMed  CAS  Google Scholar 

  • DesMarais, V., M. Ghosh, et al. (2005). “Cofilin takes the lead.” J Cell Sci 118(Pt 1): 19–26.

    Article  PubMed  CAS  Google Scholar 

  • DesMarais, V., F. Macaluso, et al. (2004). “Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension.” J Cell Sci 117(Pt 16): 3499–510.

    Article  PubMed  CAS  Google Scholar 

  • Desmarais, V., H. Yamaguchi, et al. (2009). “N-WASP and cortactin are involved in invadopodium-dependent chemotaxis to EGF in breast tumor cells.” Cell Motil Cytoskeleton 66(6): 303–16.

    Article  PubMed  CAS  Google Scholar 

  • Diaz, B., et al. (2009). “Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation.” Sci Signal 2(88): ra53.

    Article  PubMed  CAS  Google Scholar 

  • Di Vizio, D., J. Kim, et al. (2009). “Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease.” Cancer Res 69(13): 5601–9.

    Article  PubMed  CAS  Google Scholar 

  • Eiseler, T., H. Doppler, et al. (2009). “Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot.” Nat Cell Biol 11(5): 545–56.

    Article  PubMed  CAS  Google Scholar 

  • El-Sibai, M., O. Pertz, et al. (2008). “RhoA/ROCK-mediated switching between Cdc42- and Rac1-dependent protrusion in MTLn3 carcinoma cells.” Exp Cell Res 314(7): 1540–52.

    Article  PubMed  CAS  Google Scholar 

  • Faix, J. and R. Grosse (2006). “Staying in shape with formins.” Dev Cell 10(6): 693–706.

    Article  PubMed  CAS  Google Scholar 

  • Frantz, C., G. Barreiro, et al. (2008). “Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding.” J Cell Biol 183(5): 865–79.

    Article  PubMed  CAS  Google Scholar 

  • Friedl, P. and D. Gilmour (2009). “Collective cell migration in morphogenesis, regeneration and cancer.” Nat Rev Mol Cell Biol 10(7): 445–57.

    Article  PubMed  CAS  Google Scholar 

  • Genda, T., M. Sakamoto, et al. (1999). “Cell motility mediated by rho and Rho-associated protein kinase plays a critical role in intrahepatic metastasis of human hepatocellular carcinoma.” Hepatology 30(4): 1027–36.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, M., X. Song, et al. (2004). “Cofilin promotes actin polymerization and defines the direction of cell motility.” Science 304(5671): 743–6.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, T. S., K. Kumar, et al. (2007). “Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse.” Immunity 26(2): 177–90.

    Article  PubMed  CAS  Google Scholar 

  • Gorbatyuk, V. Y., N. J. Nosworthy, et al. (2006). “Mapping the phosphoinositide-binding site on chick cofilin explains how PIP2 regulates the cofilin-actin interaction.” Mol Cell 24(4): 511–22.

    Article  PubMed  CAS  Google Scholar 

  • Gumbiner, B. M. (2005). “Regulation of cadherin-mediated adhesion in morphogenesis.” Nat Rev Mol Cell Biol 6(8): 622–34.

    Article  PubMed  CAS  Google Scholar 

  • Gunnersen, J.M., et al. (2000). “Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expression.” Glia 32(2): 146–54.

    Article  PubMed  CAS  Google Scholar 

  • Gupton, S. L., K. L. Anderson, et al. (2005). “Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin.” J Cell Biol 168(4): 619–31.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez, L., T. Smirnova, et al. (2009). “The EGF/CSF-1 paracrine invasion loop can be triggered by heregulin beta1 and CXCL12.” Cancer Res 69(7): 3221–7.

    Article  PubMed  CAS  Google Scholar 

  • Higgs, H. N. (2005). “Formin proteins: a domain-based approach.” Trends Biochem Sci 30(6): 342–53.

    Article  PubMed  CAS  Google Scholar 

  • Hotulainen, P. and P. Lappalainen (2006). “Stress fibers are generated by two distinct actin assembly mechanisms in motile cells.” J Cell Biol 173(3): 383–94.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C., N. N. Tandon, et al. (1997). “Proteolysis of platelet cortactin by calpain.” J Biol Chem 272(31): 19248–52.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., et al. (2003) “Cooperative roles of Fyn and cortactin in cell migration of metastatic murine melanoma.” J Biol Chem 278(48): 48367–76.

    Article  PubMed  CAS  Google Scholar 

  • Hui, R., et al. (1997) “EMS1 amplification can occur independently of CCND1 or INT-2 amplification at 11q13 and may identify different phenotypes in primary breast cancer”. Oncogene 15(13): 1617–23.

    Article  PubMed  CAS  Google Scholar 

  • Ichetovkin, I., W. Grant, et al. (2002). “Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex.” Curr Biol 12(1): 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Ichetovkin, I., J. Han, et al. (2000). “Actin filaments are severed by both native and recombinant dictyostelium cofilin but to different extents.” Cell Motil Cytoskeleton 45(4): 293–306.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, K., K. Yoshioka, et al. (1999). “An essential part for Rho-associated kinase in the transcellular invasion of tumor cells.” Nat Med 5(2): 221–5.

    Article  PubMed  CAS  Google Scholar 

  • Jadeski, L., et al. (2008). “IQGAP1 stimulates proliferation and enhances tumorigenesis of human breast epithelial cells.” J Biol Chem 283(2): 1008–17.

    Article  PubMed  CAS  Google Scholar 

  • Kamai, T., T. Tsujii, et al. (2003). “Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer.” Clin Cancer Res 9(7): 2632–41.

    PubMed  CAS  Google Scholar 

  • Kay, R. R., P. Langridge, et al. (2008). “Changing directions in the study of chemotaxis.” Nat Rev Mol Cell Biol 9(6): 455–63.

    PubMed  CAS  Google Scholar 

  • Kempiak, S. J., H. Yamaguchi, et al. (2005). “A neural Wiskott-Aldrich Syndrome protein-mediated pathway for localized activation of actin polymerization that is regulated by cortactin.” J Biol Chem 280(7): 5836–42.

    Article  PubMed  CAS  Google Scholar 

  • Kinley, A. W., S. A. Weed, et al. (2003). “Cortactin interacts with WIP in regulating Arp2/3 activation and membrane protrusion.” Curr Biol 13(5): 384–93.

    Article  PubMed  CAS  Google Scholar 

  • Kitzing, T. M., A. S. Sahadevan, et al. (2007). “Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion.” Genes Dev 21(12): 1478–83.

    Article  PubMed  CAS  Google Scholar 

  • Koka, S., C. L. Neudauer, et al. (2003). “The formin-homology-domain-containing protein FHOD1 enhances cell migration.” J Cell Sci 116(Pt 9): 1745–55.

    Article  PubMed  CAS  Google Scholar 

  • Kowalski, J. R., C. Egile, et al. (2005). “Cortactin regulates cell migration through activation of N-WASP.” J Cell Sci 118(Pt 1): 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Kurisu, S., S. Suetsugu, et al. (2005). “Rac-WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells.” Oncogene 24(8): 1309–19.

    Article  PubMed  CAS  Google Scholar 

  • Kurisu, S. and T. Takenawa (2009). “The WASP and WAVE family proteins.” Genome Biol 10(6): 226.

    Article  PubMed  CAS  Google Scholar 

  • Leung, T., E. Manser, et al. (1995). “A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes.” J Biol Chem 270(49): 29051–4.

    Article  PubMed  CAS  Google Scholar 

  • Leyman, S., M. Sidani, et al. (2009). “Unbalancing the PI(4, 5)P2-Cofilin Interaction Impairs Cell Steering.” Mol Biol Cell 20: 4509–4523.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., M. Tondravi, et al. (2001). “Cortactin potentiates bone metastasis of breast cancer cells.” Cancer Res 61(18): 6906–11.

    PubMed  CAS  Google Scholar 

  • Linder, S. (2009). “Invadosomes at a glance.” J Cell Sci 122(Pt 17): 3009–13.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., P. Yue, et al. (2009). “The Role of the Exocyst in MMP Secretion and Actin Dynamics during Tumor Cell Invadopodia Formation.” Mol Biol Cell 20: 3763–3771.

    Article  PubMed  CAS  Google Scholar 

  • Lizarraga, F., R. Poincloux, et al. (2009). “Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells.” Cancer Res 69(7): 2792–800.

    Article  PubMed  CAS  Google Scholar 

  • Luo, C., H. Pan, et al. (2006). “CXCL12 induces tyrosine phosphorylation of cortactin, which plays a role in CXC chemokine receptor 4-mediated extracellular signal-regulated kinase activation and chemotaxis.” J Biol Chem 281(40): 30081–93.

    Article  PubMed  CAS  Google Scholar 

  • Machesky, L. M. (2008). “Lamellipodia and filopodia in metastasis and invasion.” FEBS Lett 582(14): 2102–11.

    Article  PubMed  CAS  Google Scholar 

  • Marone, R., D. Hess, et al. (2004). “Memo mediates ErbB2-driven cell motility.” Nat Cell Biol 6(6): 515–22.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Quiles, N., H. Y. Ho, et al. (2004). “Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP.” Mol Cell Biol 24(12): 5269–80.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, T., M. Amano, et al. (1996). “Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho.” EMBO J 15(9): 2208–16.

    PubMed  CAS  Google Scholar 

  • Meira, M., R. Masson, et al. (2009). “Memo is a cofilin-interacting protein that influences PLCgamma1 and cofilin activities, and is essential for maintaining directionality during ErbB2-induced tumor-cell migration.” J Cell Sci 122(Pt 6): 787–97.

    Article  PubMed  CAS  Google Scholar 

  • Minamiya, Y., T. Nakagawa, et al. (2005). “Increased expression of myosin light chain kinase mRNA is related to metastasis in non-small cell lung cancer.” Tumour Biol 26(3): 153–7.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, T., et al. (2005) “Possible mechanism of metastasis in lung adenocarcinomas with a micropapillary pattern.” Pathol Int 55(7): 419–24.

    Article  PubMed  Google Scholar 

  • Mooren, O. L., T. I. Kotova, et al. (2009). “Dynamin2 GTPase and cortactin remodel actin filaments.” J Biol Chem 284: 23995–24005.

    Article  PubMed  CAS  Google Scholar 

  • Mouneimne, G., V. DesMarais, et al. (2006). “Spatial and temporal control of cofilin activity is required for directional sensing during chemotaxis.” Curr Biol 16(22): 2193–205.

    Article  PubMed  CAS  Google Scholar 

  • Mouneimne, G., L. Soon, et al. (2004). “Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation.” J Cell Biol 166(5): 697–708.

    Article  PubMed  CAS  Google Scholar 

  • Oikawa, T., T. Itoh, et al. (2008). “Sequential signals toward podosome formation in NIH-src cells.” J Cell Biol 182(1): 157–69.

    Article  PubMed  CAS  Google Scholar 

  • Olson, M. F. and E. Sahai (2009). “The actin cytoskeleton in cancer cell motility.” Clin Exp Metastasis 26(4): 273–87.

    Article  PubMed  Google Scholar 

  • Oser, M., H. Yamaguchi, et al. (2009). “Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation.” J Cell Biol 186(4): 571–87.

    Article  PubMed  CAS  Google Scholar 

  • Oser, M. and J. Condeelis (2009). “The cofilin activity cycle in lamellipodia and invadopodia.” J Cell Biochem 108: 1252–1262.

    Article  PubMed  CAS  Google Scholar 

  • Otsubo, T., et al. (2004). “Involvement of Arp2/3 complex in the process of colorectal carcinogenesis.” Mod Pathol 17(4): 461–7.

    Article  PubMed  CAS  Google Scholar 

  • Packard, B. Z., V. V. Artym, et al. (2009). “Direct visualization of protease activity on cells migrating in three-dimensions.” Matrix Biol 28(1): 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Pantel, K., R. H. Brakenhoff, et al. (2008). “Detection, clinical relevance and specific biological properties of disseminating tumour cells.” Nat Rev Cancer 8(5): 329–40.

    Article  PubMed  CAS  Google Scholar 

  • Perrin, B. J., K. J. Amann, et al. (2006). “Proteolysis of cortactin by calpain regulates membrane protrusion during cell migration.” Mol Biol Cell 17(1): 239–50.

    Article  PubMed  CAS  Google Scholar 

  • Philippar, U., E. T. Roussos, et al. (2008). “A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis.” Dev Cell 15(6): 813–28.

    Article  PubMed  CAS  Google Scholar 

  • Poincloux, R., F. Lizarraga, et al. (2009). “Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia.” J Cell Sci 122(Pt 17): 3015–24.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T. D. (2007). “Regulation of actin filament assembly by Arp2/3 complex and formins.” Annu Rev Biophys Biomol Struct 36: 451–77.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T. D. and G. G. Borisy (2003). “Cellular motility driven by assembly and disassembly of actin filaments.” Cell 112(4): 453–65.

    Article  PubMed  CAS  Google Scholar 

  • Riento, K. and A. J. Ridley (2003). “Rocks: multifunctional kinases in cell behaviour.” Nat Rev Mol Cell Biol 4(6): 446–56.

    Article  PubMed  CAS  Google Scholar 

  • Ridley A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, A. R. Horwitz (2003) Cell migration: integrating signals from front to back. Science 302: 1704–709.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, B. D., G. L. Sica, et al. (2009). “Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination.” Clin Cancer Res 15(7): 2433–41.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo, J. P., et al. (2000) “EMS1 gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck.” Clin Cancer Res 6(8): 3177–82.

    PubMed  CAS  Google Scholar 

  • Rohatgi, R., P. Nollau, et al. (2001). “Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway.” J Biol Chem 276(28): 26448–52.

    Article  PubMed  CAS  Google Scholar 

  • Sabeh, F., R. Shimizu-Hirota, et al. (2009). “Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited.” J Cell Biol 185(1): 11–9.

    Article  PubMed  CAS  Google Scholar 

  • Sahai, E. (2005). “Mechanisms of cancer cell invasion.” Curr Opin Genet Dev 15(1): 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai-Yageta, M., C. Recchi, et al. (2008). “The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA.” J Cell Biol 181(6): 985–98.

    Article  PubMed  CAS  Google Scholar 

  • Sarmiento, C., W. Wang, et al. (2008). “WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells.” J Cell Biol 180(6): 1245–60.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, D. A., S. A. Weed, et al. (2002). “Dynamin2 and cortactin regulate actin assembly and filament organization.” Curr Biol 12(21): 1852–7.

    Article  PubMed  CAS  Google Scholar 

  • Schirenbeck, A., T. Bretschneider, et al. (2005). “The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia.” Nat Cell Biol 7(6): 619–25.

    Article  PubMed  CAS  Google Scholar 

  • Scott, R. W. and M. F. Olson (2007). “LIM kinases: function, regulation and association with human disease.” J Mol Med 85(6): 555–68.

    Article  PubMed  CAS  Google Scholar 

  • Seals, D.F., et al. (2005). “The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells.” Cancer Cell 7(2): 155–65.

    Article  PubMed  CAS  Google Scholar 

  • Semba, S., et al. (2006). “Coexpression of actin-related protein 2 and Wiskott-Aldrich syndrome family verproline-homologous protein 2 in adenocarcinoma of the lung.” Clin Cancer Res 12(8): 2449–54.

    Article  PubMed  CAS  Google Scholar 

  • Sidani, M., D. Wessels, et al. (2007). “Cofilin determines the migration behavior and turning frequency of metastatic cancer cells.” J Cell Biol 179(4): 777–91.

    Article  PubMed  CAS  Google Scholar 

  • Silva, J. M., E. Ezhkova, et al. (2009). “Cyfip1 is a putative invasion suppressor in epithelial cancers.” Cell 137(6): 1047–61.

    Article  PubMed  CAS  Google Scholar 

  • Somlyo, A. V., D. Bradshaw, et al. (2000). “Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells.” Biochem Biophys Res Commun 269(3): 652–9.

    Article  PubMed  CAS  Google Scholar 

  • Song, X., X. Chen, et al. (2006). “Initiation of cofilin activity in response to EGF is uncoupled from cofilin phosphorylation and dephosphorylation in carcinoma cells.” J Cell Sci 119(Pt 14): 2871–81.

    Article  PubMed  CAS  Google Scholar 

  • Soon, L. L. (2007). “A discourse on cancer cell chemotaxis: where to from here?” IUBMB Life 59(2): 60–7.

    Article  PubMed  CAS  Google Scholar 

  • Stylli, S. S., S. T. I, et al. (2009). “Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation.” J Cell Sci 122: 2727–2740.

    Google Scholar 

  • Stylli, S. S., T. T. Stacey, et al. (2009). “Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation.” J Cell Sci 122(Pt 15): 2727–40.

    Article  PubMed  CAS  Google Scholar 

  • Takamura, M., M. Sakamoto, et al. (2001). “Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632.” Hepatology 33(3): 577–81.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, S., M. Kunii, et al. (2009). “Generation of cortactin floxed mice and cellular analysis of motility in fibroblasts.” Genesis 47: 638–646.

    Article  PubMed  CAS  Google Scholar 

  • Tehrani, S., N. Tomasevic, et al. (2007). “Src phosphorylation of cortactin enhances actin assembly.” Proc Natl Acad Sci U S A 104(29): 11933–8.

    Article  PubMed  CAS  Google Scholar 

  • Torka, R., F. Thuma, et al. (2006). “ROCK signaling mediates the adoption of different modes of migration and invasion in human mammary epithelial tumor cells.” Exp Cell Res 312(19): 3857–71.

    Article  PubMed  CAS  Google Scholar 

  • Uruno, T., J. Liu, et al. (2001). “Activation of Arp2/3 complex-mediated actin polymerization by cortactin.” Nat Cell Biol 3(3): 259–66.

    Article  PubMed  CAS  Google Scholar 

  • van Rheenen, J., X. Song, et al. (2007). “EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells.” J Cell Biol 179(6): 1247–59.

    Article  PubMed  CAS  Google Scholar 

  • Van Troys, M., L. Huyck, et al. (2008). “Ins and outs of ADF/cofilin activity and regulation.” Eur J Cell Biol 87(8–9): 649–67.

    PubMed  Google Scholar 

  • Vishnubhotla, R., S. Sun, et al. (2007). “ROCK-II mediates colon cancer invasion via regulation of MMP-2 and MMP-13 at the site of invadopodia as revealed by multiphoton imaging.” Lab Invest 87(11): 1149–58.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., R. Eddy, et al. (2007a). “The cofilin pathway in breast cancer invasion and metastasis.” Nat Rev Cancer 7(6): 429–40.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., S. Goswami, et al. (2004). “Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors.” Cancer Res 64(23): 8585–94.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., S. Goswami, et al. (2005). “Tumor cells caught in the act of invading: their strategy for enhanced cell motility.” Trends Cell Biol 15(3): 138–45.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., G. Mouneimne, et al. (2006). “The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors.” J Cell Biol 173(3): 395–404.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., J. B. Wyckoff, et al. (2007b). “Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors.” Cancer Res 67(8): 3505–11.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, A. M. (2008). “Cortactin in tumor invasiveness.” Cancer Lett 265(2): 157–66.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, A. M., A. V. Karginov, et al. (2001). “Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation.” Curr Biol 11(5): 370–4.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, A. M., M. E. Young, et al. (2003). “Integration of signals to the Arp2/3 complex.” Curr Opin Cell Biol 15(1): 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Weed, S. A., A. V. Karginov, et al. (2000). “Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex.” J Cell Biol 151(1): 29–40.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, S., H. F. Paterson, et al. (2005). “Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion.” Nat Cell Biol 7(3): 255–61.

    Article  PubMed  CAS  Google Scholar 

  • Wong, C. C., C. M. Wong, et al. (2009). “Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion.” Hepatology 49(5): 1583–94.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H. and J. T. Parsons (1993). “Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex.” J Cell Biol 120(6): 1417–26.

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff, J., W. Wang, et al. (2004). “A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors.” Cancer Res 64(19): 7022–9.

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff, J. B., J. G. Jones, et al. (2000a). “A critical step in metastasis: in vivo analysis of intravasation at the primary tumor.” Cancer Res 60(9): 2504–11.

    PubMed  CAS  Google Scholar 

  • Wyckoff, J. B., S. E. Pinner, et al. (2006). “ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo.” Curr Biol 16(15): 1515–23.

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff, J. B., J. E. Segall, et al. (2000b). “The collection of the motile population of cells from a living tumor.” Cancer Res 60(19): 5401–4.

    PubMed  CAS  Google Scholar 

  • Wyckoff, J. B., Y. Wang, et al. (2007). “Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors.” Cancer Res 67(6): 2649–56.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, H. and J. Condeelis (2007). “Regulation of the actin cytoskeleton in cancer cell migration and invasion.” Biochim Biophys Acta 1773(5): 642–52.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, H., M. Lorenz, et al. (2005). “Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin.” J Cell Biol 168(3): 441–52.

    Article  PubMed  CAS  Google Scholar 

  • Yanagawa, R., et al. (2001). “Genome-wide screening of genes showing altered expression in liver metastases of human colorectal cancers by cDNA microarray.” Neoplasia 3(5): 395–401.

    Article  PubMed  CAS  Google Scholar 

  • Yoneda, A., H. A. Multhaupt, et al. (2005). “The Rho kinases I and II regulate different aspects of myosin II activity.” J Cell Biol 170(3): 443–53.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L.H., et al. (2006). “Dominant expression of 85-kDa form of cortactin in colorectal cancer.” J Cancer Res Clin Oncol 132(2): 113–20.

    Article  PubMed  Google Scholar 

  • Zhang, S., et al. (2009). “RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors.” Mol Cancer Res 7(4): 570–80.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J., D. Yu, et al. (2007). “Receptor-mediated endocytosis involves tyrosine phosphorylation of cortactin.” J Biol Chem 282(22): 16086–94.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X. L., L. Liang, et al. (2008). “Overexpression of FMNL2 is closely related to metastasis of colorectal cancer.” Int J Colorectal Dis 23(11): 1041–7.

    Article  PubMed  Google Scholar 

  • Zuo, X., J. Zhang, et al. (2006). “Exo70 interacts with the Arp2/3 complex and regulates cell migration.” Nat Cell Biol 8(12): 1383–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by CA113395, CA126511, CA150344 (JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Oser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Oser, M., Eddy, R., Condeelis, J. (2010). Actin-based Motile Processes in Tumor Cell Invasion. In: Carlier, MF. (eds) Actin-based Motility. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9301-1_6

Download citation

Publish with us

Policies and ethics